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Abstract

The growing impacts of artificial intelligence (AI) are spurring states to con-

sider international agreements that could help manage this rapidly evolving

technology. The political feasibility of such agreements can hinge on their

verifiability—the extent to which the states involved can determine whether

other states are complying. This report analyzes several potential interna-

tional agreements and ways they could be verified. To improve the robustness

of the conclusions, pessimistic assumptions are made about the technical and

political parameters of the verification challenge.

This report has three primary findings. First, verification of many inter-

national AI agreements appears possible even without speculative advances

in verification technology. Some agreements can be verified using existing

hardware, while others will require major investments in developing and in-

stalling verification infrastructure. In particular, verifying the regulation of

data center-based AI development and deployment appears to be possible

within a few years if serious efforts are made toward that goal. One such

scheme would require 1) constructing and installing narrow-purpose verifi-

cation hardware in data centers and 2) creating a mutually verified data cen-

ter which can run privacy-preserving computations. Second, verification for

some kinds of AI-related activities is likely to face a combination of technical

and political barriers, thus limiting prospects for agreement. In particular,

the detailed regulation of mobile AI-enabled devices in sensitive domains—

such as weapons—faces severe political challenges. Third, near-term actions

in several areas, including research and development as well as state policy,

can improve the prospects for future verification agreements by reducing

costs and security concerns. In sum, this report outlines workable approaches

for verifying international AI agreements and illustrates how investments in

verification today can shape the political possibilities of tomorrow.
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Executive Summary

Rapid changes in the artificial intelligence (AI) ecosystem have galvanized government ef-

forts to understand this technology and shape its future. States may seek to create inter-

national agreements over AI to capture new economic opportunities, preserve peace, and

mitigate risks created or exacerbated by AI. This report examines the potential for states to

undertake verification of international agreements relating to AI—where verification is any

process by which member states can assess each other's compliance with an agreement. This

analysis aims to take into account both technological limits and political sensitivities. We

find that many AI agreements could be implemented verifiably today. Within a few years,

targeted technical and policy efforts may allow robust and politically viable verification for a

much wider range of possible agreements. One notable exception is agreements seeking to

provide detailed regulation of the behavior of mobile AI-enabled devices, such as weapons,

where a combination of domain-specific technical limitations and political sensitivities make

it extremely challenging to design acceptable verification.

Verification can be a crucial component of international agreements. Without verification,

states may find that otherwise desirable deals are unavailable, just as mutual cooperation is

often unavailable in social dilemmas such as the prisoner’s dilemma. Effective verification

mechanisms can transform strategic deadlocks into viable compromises. Verification pro-

vides states with more political room to maneuver and with reliable information about the

actions of their fellows. Therefore, it generally is in the interest of states to improve their

ability to verify agreements. For example, toward the end of the Cold War, new approaches

for verifying missiles expanded the set of realistic political options for arms control, eventu-

ally enabling the conclusion of agreements such as the Intermediate-Range Nuclear Forces

(INF) Treaty of 1987.1

Both unilateral and cooperative verification techniques are valuable. Unilateral techniques—

such as satellite imagery and intelligence operations—allow the behavior of a state to be

scrutinized without its cooperation. By contrast, cooperative verification requires the active

participation of both states—with the Prover attempting to credibly demonstrate that they

are following an agreement and the Verifier examining all available information to make

inferences about the Prover’s compliance. Some agreements require states to take on both

roles as they simultaneously try to demonstrate their own compliance while checking their

peers’ compliance.

Pessimistic assumptions about verification difficulty

This report aims to make claims about the possibilities for AI verification that are robust to

technical and political change. To do so, it makes four pessimistic assumptions about the dif-

1 Toivanen, ‘The Significance of Strategic Foresight in Verification Technologies’.
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ficulty of verification. First, we assume that decentralized training of large AI models (using

multiple geographically distributed data centers) will be tractable with minimal efficiency

losses compared to centralized training—thus requiring that AI-development governance

and verification be applied to small data centers as well as large ones. Second, we assume

that algorithmic progress may be rapid, thus drastically increasing the capabilities that may

be available with a given quantity of compute. Third, we assume that AI will be employed by

security-sensitive institutions such as intelligence agencies and militaries for sensitive pur-

poses, including those relating to personal, corporate, and state secrets. Fourth, we assume

that future treaties might need to subject even very sensitive uses of AI to detailed and verifi-

able governance, thus requiring that verification plans be compatible with secrecy and secu-

rity.2 The verification proposals described in this report are intended to be workable even if

all of these pessimistic assumptions become reality. Moreover, since these mechanisms are

designed to be robust in the face of evolving technical and political realities, they are also

likely to be workable in conditions that are less constrained.

Agreements and their verifiability

This report examines five families of agreements relating to AI:

1. Transfer knowledge: A state provides AI-related knowledge to another state.

2. Transfer resources: A state provides AI-related resources to another state.

3. Pool resources: States combine AI-related resources toward a common goal.

4. Prepare for emergencies: States prepare to detect AI emergencies and respond to them.

5. Regulate: States regulate AI development and deployment according to shared rules.

These agreement families are verifiable to different degrees, as summarized in Figure 1.

The first two families of agreements—“transfer knowledge” and “transfer resources”—are similar

to prior international agreements regarding the transfer of knowledge and resources. Just

as with their precursors in domains such as weapons-production technologies or nuclear

energy, these agreements are primarily limited by the ability of the receiving state to credibly

demonstrate that transferred knowledge or resources will not be used against the interests

of the sending state. Some marginal improvement in the verifiability of these agreements

is possible in the next few years via privacy-preserving digital verification tools as discussed

below. However, the risk of downstream misuse is expected to remain the crucial factor

limiting these agreements.

The third family of agreements—“pool resources”—is also similar to historical analogues, but

it faces less severe political problems and is therefore quite verifiable even today. States reg-

ularly create institutions to solve shared problems. By design, such international institutions

tend to provide enough information to states to demonstrate that pooled resources are not

2 These final two assumptions force us to confront the transparency-security tradeoff, where the transparency
needed to demonstrate compliance with an agreement is believed to make a state less secure. This tradeoff is the
central political challenge for some of the international agreements examined below.
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Verifiability presuming  
five years of serious effort

Verifiability if implemented 
today

Example agreementAgreement family

Yes, with political 
limitations*

Yes, with political 
limitations*

Share knowledge of AI risksTransfer knowledge

Yes, with political 
limitations*

Yes, with political 
limitations*

Share AI-specialized chipsTransfer resources

YesYesPool resources toward 
international goal

Pool resources

MaybeNoComputational emergency 
detection and repsonse

Prepare for emergencies

YesNoRegulate data center 
computations

Regulate

LimitedVery limitedRegulate AI-enabled 
weapons

*The sending state must deem the risks of knowledge or resource misuse to be tolerable.

Figure 1: The families of international agreements examined in this report and their approx-
imate verifiability.

being misused. While most prior agreements of this kind dealt with relatively low-stakes do-

mains, some engaged directly with core state interests such as security and prosperity (e.g.,

the European Coal and Steel Community). Overall, agreements aiming to pool AI resources

for political purposes are highly verifiable.

The final two families of agreements—“prepare for emergencies” and “regulate”—are much more

difficult to verify today, but preparation may allow some agreements in this domain to be

verified robustly in the coming few years. In particular, it appears likely that a few years

of intense work could allow rules about data center-based computations to be verified at

scale, including the development and deployment of AI. Challenges remain for AI-enabled

devices that are both mobile and are employed for sensitive purposes, such as weapons. The

regulation of weapons in particular is likely to remain politically difficult even when using

the verification approaches best suited to the challenge.

In sum, AI-centered agreements that bear resemblance to historical agreements over simi-

larly sensitive technologies (such as civilian nuclear energy) are roughly as verifiable as those

prior agreements were. However, some of the agreement families discussed in this report—

namely the “prepare for emergencies” and “regulate” families—pose fundamentally new
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challenges that are the key reason why these agreements are largely unverifiable today. The

central challenge in verifying these agreements is the difficulty of making credible claims

about rules that are applied to computations. This challenge is the central topic of the report

and will be explored further below.

The challenge of verifying computational rules and tools

for accomplishing it

Demonstrating that rules are being applied to computations (such as those central to AI devel-

opment or deployment) is very challenging, but hardware-centric verification schemes make

it possible. Detailed knowledge of computational activities undertaken by a state is not reli-

ably available to other states, and therefore unilateral verification is of limited use in this do-

main.3 Cooperative verification has great potential, especially via verification processes that

focus on AI-specialized computational hardware—hereafter called “chips” or “compute”. Be-

ing a physical asset, compute is easier to place verifiable controls on than are the other crucial

inputs into AI (data and algorithms). AI can only be developed and deployed on computa-

tional hardware—with compute, because of its tailoring, significantly outperforming other

kinds of hardware. The anticipated centrality of compute for the future of AI means that

hardware governance is likely to be relevant into the future regardless of how the relative

costs of inputs change or how AI paradigms evolve.4,5 Compute-centric governance also en-

ables fine-grained controls which minimize disruption to compute applications. Contrary

to the common notion that digital verification is more challenging than physical verification,

globe-spanning verification systems already enable the operation of the Internet thanks to

the remarkable abilities of modern cryptography. Similarly, civilization-scale verification

of computational activities on compute hardware appears to be not only feasible but also

achievable in a way that is designed to robustly protect the privacy and security of all parties.

All verification tools are imperfect, thus often requiring that tools be employed in combi-

nations that address their individual weaknesses and achieve a desired effect. Four kinds of

verification techniques are worth emphasizing:

1. States can use unilateral verification mechanisms to help them understand the broad

shape of activities undertaken by other states—such as their compute or power infras-

tructure investments. States may also have access to much more sensitive information

via intelligence operations, thus allowing them to double check that declarations are

correct and complete. Overall, unilateral verification serves a crucial role in limiting

3 Even though cyber attacks and intelligence operations are very capable of revealing important information,
these techniques are unlikely to be sufficient for reliable and ongoing access to the details of all computations
occurring in a rival state’s data centers.

4 An important caveat here is consumer GPUs (graphics processing units), the most powerful of which are
nearly as capable as AI-specialized chips. Depending on the political goals of the agreement, a hardware-centric
governance approach may have to either govern the most powerful GPUs or limit their AI capabilities at the
hardware level.

5 See also Konstantin Pilz, Lennart Heim, and Nicholas Brown, ‘Increased Compute Efficiency and the Diffu-
sion of AI Capabilities’ (arXiv, 13 February 2024), https://doi.org/10.48550/arXiv.2311.15377.
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the ability of states to get away with incomplete or inaccurate declarations (e.g., having

undeclared sites conducting operations in violation of an agreement).

2. Hardware-enabled on-chip mechanisms, such as confidential computing, are embed-

ded into the hardware undertaking the operations being verified.

3. Hardware-enabled off-chip mechanisms are verification techniques centered on hard-

ware placed elsewhere in the stack (not on the AI chip).6 For example, off-chip veri-

fication hardware could be placed in networking equipment, thus allowing verifiable

claims to be made about network traffic. Off-chip hardware mechanisms can be used

to provide nearly any kind of information, thus making them capable of either form-

ing a full-stack verification mechanism on their own or supporting verification schemes

centered on other techniques.

4. Personnel-centered verification can be employed to provide information about AI ac-

tivities and their institutional context. The security challenges and potential unrelia-

bility of personnel-based verification make it less suitable to serve as an independent

load-bearing aspect of an agreement. However, personnel-based schemes can be cre-

ated comparatively quickly and provide a parallel verification scheme which could be

politically useful either on its own or in combination with other verification efforts.

The deployment of new on-chip mechanisms faces significant challenges—including ma-

jor issues with technical viability, political acceptability, and deployment timelines.7 AI-

specialized chips are among the most complex objects produced by humanity, employing

a supply chain centered on extremely sensitive intellectual property and technologies—all

spanning several countries. Creating new mechanisms is technically challenging and might

require the active participation of key incumbents such as NVIDIA and Huawei. Further-

more, proving that the mechanisms are not being used for other covert purposes may be

extremely difficult, since the closely guarded chip design and production processes are hard

to scrutinize from the outside—and once a leading-node semiconductor has been built it is

infeasible to verify its entire structure.8 Even if a new on-chip mechanism can be designed

and made politically acceptable, it would take several years for new chips to be produced and

to form a meaningful part of all AI compute. This path to improved verifiability is possible,

but it faces significant challenges that have no obvious solution.

By contrast, off-chip mechanisms might be designed, built, and deployed quickly—perhaps

requiring as little as several months of focused efforts. Off-chip hardware-enabled mech-

anisms can be designed for narrow purposes and mutually verified either through non-

invasive downstream tests or cooperative production (such as in trailing-node semiconduc-

tor fabrication facilities). Unlike on-chip mechanisms, off-chip mechanisms do not neces-

6 For the sake of distinguishing these mechanisms from the commonly employed “on-chip mechanisms”
concept, these mechanisms have a negative definition that essentially means any verification-related hardware
placed anywhere except on the chip.

7 Note that existing on-chip mechanisms—such as the components underpinning confidential computing—
are extremely useful for verification, as detailed below. It is the prospect of adding new mechanisms that brings
us up against these challenges.

8 As discussed in the report, techniques may exist to do this, but they would destroy the semiconductor in the
process, thus placing limits on their usefulness.
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sarily need to be built using leading-node semiconductor fabrication techniques.9 Overall,

off-chip mechanisms appear to be capable of robustly contributing to the verifiability of

computations and many other aspects of agreements.

All of these categories of verification mechanisms have potential roles in the verification

of even the thorniest agreements. The next section outlines an ideal theoretical compu-

tational verification system and two ways that it can be approximated with existing or

near-future technology.

Two approaches to verifiable confidential computing

This report describes two technical approaches which can approximate verifiable confidential

computing—computing which perfectly protects an agent’s privacy while also providing them

with the ability to credibly demonstrate that all of their computations adhered to a set of rules.

In theory, an approach that can achieve these information exchanges would allow verifiability

with no information leakage and thus would fully address the transparency-security tradeoff.

In reality, no approach will be perfect, but serious efforts to approximate this ideal appear

to be possible. The two approaches described below share a common structure, with the

first requiring existing on-chip mechanisms for “confidential computing” and the second

requiring new verification hardware placed into networks.

A schematic illustration of both approaches is shown in Figure 2.

Encrypted data

Plaintext data

Legend:

Secrets

Prover

Verifiable operations

Prover data center

Verification computations

Neutral data center

Cryptographic commitments

Verification results

Common knowledge

Secret tests

Verifier

Figure 2: Schematic summary of a way to approximate verifiable confidential computing. This
illustrates the basic structure of both of the approaches to verifiable confidential computing
described in this report, since those approaches differ only in how the verifiable operations
produce the cryptographic commitments.

9 While leading performance is required for a competitive AI chip, it is not required for most functions that
hardware could potentially undertake (e.g., sensors, data transmission, etc.). If leading-node fabrication is desired
for a particular off-chip mechanism, it will be necessary to create a way to either verify or cooperatively produce
a leading-node semiconductor—both of which appear to be open problems as of this writing.
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Both approaches share a dependence on 1) cryptographic commitments, 2) a neutral mutu-

ally verified data center, 3) hardware inspection and monitoring, and 4) cutting-edge secu-

rity.10 Cryptographic commitments are short strings that “commit” to a piece of plaintext

data without revealing the actual data—thus allowing an actor to later reveal the true data

and simultaneously prove that it was the same data that was committed to earlier.11 A neu-

tral mutually verified data center is a data center that parties to an agreement cooperatively

build, maintain, and secure with the express purpose of running high-sensitivity computa-

tions with neither party having access to the data. Both schemes below involve a) computa-

tional processes producing cryptographic commitments about the data involved (including

all code and parameters), b) which can then be used to demonstrate within a neutral mutually

verified data center that the true data has been revealed, c) thus allowing privacy-preserving

computational processes to be run on the true data to determine whether they are compli-

ant with rules. To provide mutual assurance that all hardware throughout all relevant data

centers is configured correctly and not subject to physical circumvention attacks, all hard-

ware involved in these schemes is presumed to be mutually inspected and then subject to

continuous monitoring.

The first approach employs “confidential computing” features that are already available in

leading compute hardware and will be more widely available in the future.12 Confidential

computing allows a set of actors (here termed the Prover and Verifier) to undertake com-

putations using private data in which only the computational results are available to the ac-

tors (not the data itself). Overall, technologies like confidential computing allow the Prover

and Verifier to mutually review code and run tests against each other’s data. This kind of

privacy-preserving information exchange has significant potential for technical verification.

Aspirationally, it may even provide a way to answer the age-old question of “Who watches

the watchers?” since mutual verification among a set of competent actors may be sufficient

to demonstrate not only compliance with a set of rules, but also that all tools and data used

within the system are true to purpose and not secret attempts to circumvent or undermine

the governance system. Given that confidential computing features are already available on

some of the leading AI chips, there is potential for a rapid rollout of this approach to govern

an important portion of AI compute.

The second approach leverages networking hardware and hardware enclosures to make cryp-

tographic commitments about all traffic. In theory, such cryptographic commitments can

be just as credible as those made via confidential computing, since hardware configurations

10 On security, the reader is encouraged to consult Sella Nevo et al., ‘Securing AI Model Weights: Preventing
Theft and Misuse of Frontier Models’ (RAND Corporation, 30 May 2024), https://www.rand.org/pubs/rese
arch_reports/RRA2849-1.html.

11 Less technically, a commitment lets you prove that pieces of data are identical without revealing the
data itself.

12 The term “confidential computing” is used in this report to refer to not only the existing confidential com-
puting standard, but also the entire family of technologies that can similarly enable credible multi-agent remote
attestation. A full exploration of this family of technologies and techniques is beyond the scope of this report.
For more on this subject, see Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf, ‘Trusted Execution
Environments: Properties, Applications, and Challenges’, IEEE Security & Privacy 18, no. 2 (March 2020): 56–60,
https://doi.org/10.1109/MSEC.2019.2947124.
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could be inspected closely—and then monitored—to ensure that the verified networking

hardware is the only such hardware available. While this scheme employs very mature tech-

nology families such as networking technology and cryptographic commitments, there are

many unanswered questions about the difficulty, cost, and time involved in deploying this

scheme at scale. This approach therefore requires further research and development.

These two approaches can each provide a way for a Prover to demonstrate that their computa-

tions are compliant with rules. It also appears to be possible to implement both approaches in

parallel, thus providing two independent mechanisms—backed by different roots of trust—

for making verifiable claims. Much more exploration is needed of these approaches and

potential alternatives, but there is room for cautious optimism that at least one technical

approach to verifiable confidential computing will be workable.

Political options and tradeoffs

In addition to their presumed overall prioritization of security and prosperity, states will

face a number of political tradeoffs in their negotiations of AI agreements. Several such

tradeoffs relate directly to verification and are thus explored briefly in this report. In their

consideration of a complex AI-related agreement, such as an agreement to regulate data

center-based AI development and inference, states must make several choices.

1. Which parts of the AI value chain—such as training, fine-tuning, and inference—should

be governed and verified? The choice of stage to govern has ramifications for the AI

ecosystem, including what AI tools can be created legally and which institutions might

bear the financial and legal costs of compliance.

2. Should aspects of enforcement be embedded in the agreement directly to change the

difficulty of the verification problem or to make the political agreement more robust?

3. What level of certainty of compliance is needed—and what costs in terms of money, se-

curity, delayed implementation, or slower AI computations are the various states willing

to pay for a marginal improvement in certainty?

4. How gradual must agreement implementation be—and how delayed must verification

processes be in relation to the activities they are verifying—in order to sufficiently alle-

viate the security concerns of all states?

5. Would automated code-centric verification be sufficient for the political purposes of

the agreement or will human judgment be needed for all verification operations or as a

pathway for rare escalation when automated systems provide ambiguous signals?

6. Where will crucial parts of the verification system—such as data centers for running ver-

ification computations or licensing systems—be located? The location of crucial hard-

ware can shape the political viability of agreements and how states perceive the possi-

bility of one state (or all) exiting the agreement.

7. How much AI hardware must be regulated? Key hardware families include new AI hard-

ware, legacy AI hardware, and commodity chips such as gaming GPUs. Exempting less-

14



performant hardware from governance allows a significant proportion of AI work to be

ungoverned—at least initially—but makes the agreement much easier to implement.

The many dimensions of political choice can be daunting, but they are also a reason for cau-

tious optimism. When bargaining can be undertaken in many dimensions simultaneously—

and when many of these dimensions allow for fine-grained choices—there is likely to be a

combination of political choices that allow an agreement to fall within the zone of possible

agreement for all states.13 Similarly, there is reason to believe that a flexible set of parame-

ters will allow states to bargain their way toward a stable equilibrium that is near the Pareto

frontier, thus minimizing overall costs while maximizing overall gains.

Areas for further work

Meaningful further work on AI verification can be done on a number of different fronts, but

only a few will be highlighted in this summary. Four areas will be outlined: research and

development, actions that any institution can take, unilateral state action, and cooperative

state action.

Research and development would be particularly valuable on seven general directions:

1. exploring the potential and limits of confidential computing—with a particular focus

on resilience to extremely sophisticated cyber attacks;

2. designing and building hardware mechanisms for providing cryptographic commit-

ments about network data;

3. collating general techniques for inspecting data center hardware as well as ways to pro-

vide ongoing monitoring to ensure that local hardware attacks are infeasible;

4. outlining a roadmap toward a neutral mutually verified data center that can realistically

undertake politically sensitive computations while keeping that data robustly safe from

all actors;

5. exploring the possibility of verifying and monitoring containerized data centers which

can be moved to undisclosed locations to provide security assurances for security-

optimizing institutions such as militaries;

6. exploring both the limits of verifying hardware that has already been created and

the prospects for verifiable cooperative production of hardware at either leading- or

trailing-node fabs;

7. expanding and diversifying the work on verifying whether rules are followed by digi-

tal objects—presuming plaintext access within existing privacy-preserving frameworks

such as confidential computing—to include not only models but also other information

such as training data, algorithm code, and inference exchanges.

13 Paul Poast, ‘Issue Linkage and International Cooperation: An Empirical Investigation’, Conflict Management
and Peace Science, no. 3 (2013): 286–303.
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Any institution can support the development of the AI verification conversation. In particu-

lar, it would be very valuable for one or more open projects to develop transparent verifica-

tion infrastructure and processes which could be leveraged by other actors. Industry players

may wish to actively support such efforts in order to help foster regulatory interoperability

between jurisdictions in which they do business. Another area for valuable open develop-

ment would be evaluations and meta-evaluations—which are techniques for demonstrating

that private evaluation code and data actually accomplish their declared goal and not some

secret other goal. Even if meta-evaluations can never be perfect and even though adversaries

can certainly “teach to the test” against open standards, such work has the potential to make

falsified evaluations much harder to create and can thus help states as they seek to verify each

other’s testing frameworks. Finally, any institution, in addition to supporting direct work on

these problems, can galvanize broad interest via repeated contest-like incentives such as bug

bounties to find issues with proposals.

Unilateral state efforts should focus on 1) building their domestic capacity to understand the

AI ecosystem and the prospects for AI verification; 2) developing their own evaluation suites

(see above) while keeping at least some aspects of these suites secret to avoid allowing AI

developers or other states too much ability to find ways to circumvent these tests; 3) support-

ing the creation and rollout of interoperable verification standards to either aid their own

domestic AI industry or galvanize foreign players to create secure and verifiable AI services

that they can use safely; and 4) avoiding colocation of AI facilities with other sensitive equip-

ment, such as cutting-edge military hardware, which can help allow future inspections and

monitoring of AI hardware without severe security concerns.

Cooperative state efforts can begin with the following three policies, each of which can grow

from a unilateral or minilateral effort into a broader cooperative effort as the politics of verifi-

cation evolve. First, states can expand their tracking of key inputs to AI such as AI-specialized

chips and the equipment for producing them. Second, states can deliberately carve out space

for international academic and civil society discussions on verification to enable these non-

governmental communities to build common understanding of the problems and potential

solutions. Third, states can monitor the situation and share information with trusted part-

ners as they consider when to engage more broadly. Progress in AI may be extremely rapid,

so states may need to make substantial efforts not only to keep up with the changing techno-

logical frontier, but also to plan ahead for the potential political demands of tomorrow.

In closing, it should be noted that for the optimistic predictions of this report to come about,

political will is required. Absent political will to create and deploy verification mechanisms

across key infrastructure, AI computations will remain largely unverifiable. If key states get

serious about these problems, a combination of unilateral, collaborative, and open efforts

should be sufficient to enable the creation of a robust verification system within a few years.
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1 Introduction

As the benefits and risks of artificial intelligence (AI) have become increasingly salient, discus-

sions have begun about how governments can act to bolster markets and avert risks. Stake-

holders in these governance conversations must grapple with a remarkably fast-moving,

general-purpose technology that has the potential to affect every area of human life. One

crucial thread of these conversations is the prospect of international agreements that relate

to AI and what they can accomplish. For many such agreements, their potential hinges

on the extent to which states can verify whether other states are abiding by their commit-

ments.14,15 This report examines the verification of international agreements relating to AI,

with a particular emphasis on approaches that might be technically and politically feasible

in the near future.

The viability of international agreements can hinge on their verifiability because in many

cases states would not want to bind their own actions unless their counterparties were sim-

ilarly bound. If defection from an agreement cannot be detected, then the agreement will

be unlikely to have a significant effect on state action.16 However, if states can reliably de-

tect defection, agreements might be possible. Since verification mechanisms are focused on

revealing information about compliance, these mechanisms can open up political options—

thus expanding the reach of the “art of the possible”.17

This report is structured around the idea that verification mechanisms are best understood in

the context of the agreements that they are supposed to be verifying. Myriad political factors

will affect states’ choices about which verification techniques to implement for a given agree-

ment.18 So while verification mechanisms—and verification technologies in particular—can

indeed open up political options, politics will also determine which verification mechanisms

are workable in a given circumstance. Therefore, the politics and the technological frontier

of verification must be considered together when trying to map the space of possibilities.

Both unilateral and cooperative verification schemes are possible. Unilateral verification typ-

ically presumes that no formal or even tacit agreement exists that would enable or ease verifi-

14 In this report, a “state” is a country.
15 Dialogues between global academics have recently highlighted the particular need for AI verification. Bengio,

Yoshua, Andrew Yao, Geoffrey Hinton, Zhang Ya-Qin, Stuart Russell, Gillian Hadfield, Mary Robinson, Xue Lan,
et al. ‘IDAIS-Venice’ (International Dialogues on AI Safety, 2024), idais.ai/dialogue/idais-venice/.

16 A particularly challenging domain is agreements over cyber weaponry. Unfortunately, cyberweapons can
be developed and stockpiled in secret, thus making it infeasible to make robust agreements about their creation.
Even worse, states often cannot discover who is attacking them in the cyber realm, since attackers can obfuscate
the source of attacks.

17 The broad definition of verification used in this report is inclusive of information activities that are also
referred to as “reporting” or “monitoring”. This report will use the term “verification” throughout to indicate its
emphasis on the more robust end of the spectrum of such mechanisms.

18 In this report, verification “techniques” are a more general category than “technologies”. Here, “techniques” is
similar to the concept of a “mechanism”, referring to any way in which things could work. Meanwhile, “technolo-
gies” refer to ways of doing things, with an emphasis on enablers such as hardware and software. For example,
social structures such as institutions are not referred to as technologies within this report.
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cation processes. Cooperative verification refers to scenarios where states have at least some

incentive to demonstrate their compliance to one another. While unilateral verification is

primarily constrained by the available technologies and the domain of interest,19 coopera-

tive verification is typically a balancing act between diverging political needs. For cooperative

verification, it's productive to consider the politics of verification in both directions. Not only

is the Verifier trying to determine whether the Prover is complying with the agreement, but

the Prover might also be trying to credibly demonstrate their compliance in a way that they

deem to be politically acceptable.20

The scope of AI considered in this report includes both data center-based models and mo-

bile AI-enabled devices.21 Therefore, this report relates to a wide spectrum of automated

capabilities, including not only models that require large-scale computing hardware, but

also smaller models that can be deployed widely on devices for economic, industrial, or mil-

itary purposes. Furthermore, some of the agreement and verification types discussed here

are centered on key inputs such as computing hardware, data, and infrastructure—both as

mechanisms for governing AI and as targets for agreements in their own right.22

This report includes analysis of both the civilian domain and highly sensitive domains such

as state military and intelligence efforts. While the fast-moving civilian domain has been the

target of most governance proposals thus far, analogous governance discussions for military

AI remain underexplored.23 This allocation of attention is expected given that AI’s frontier

has been driven forward by civilian institutions and purposes. However, as AI begins to be

woven into all aspects of life, it will also become increasingly important for highly sensitive

parts of the state apparatus. These changes warrant attention. Moreover, these sensitive

domains present political difficulties that are substantially different from those in the civilian

realm. As will be explored at length in this report, states can face a transparency-security

tradeoff in their attempts to make verifiable deals with each other, where relatively robust

verification possibilities can come at the cost of state security.24 On the other hand, it is also

possible that concerns about state security will be the very issues that will bring states to the

table in the first place, just as was the case with nuclear arms control during the Cold War.25

19 In an extreme scenario, if all relevant activities are clearly visible from space and all states have satellites,
there would be no need for cooperative verification. Relatedly, early 20th-century naval agreements such as
the Washington Naval Conference had no need for cooperative verification mechanisms because it was deemed
infeasible to hide naval buildups from the other states.

20 In this report, a Prover is a state that claims to be attempting to demonstrate their compliance with an
agreement. A Verifier is an institution (e.g., another state or an international institution) that is assessing the
Prover’s compliance.

21 “Mobile” here refers to devices that can be moved around. The key examples explored in this report are
AI-enabled weapons.

22 For example, the report will discuss deals where states choose to apportion AI development and deployment
infrastructure according to an agreement.

23 Matthijs M. Maas and José Jaime Villalobos, ‘International AI Institutions: A Literature Review of Models,
Examples, and Proposals’, SSRN Scholarly Paper (Rochester, NY, 22 September 2023), https://doi.org/10.2
139/ssrn.4579773; Robert Trager et al., ‘International Governance of Civilian AI: A Jurisdictional Certification
Approach’ (Oxford Martin AI Governance Initiative, 2023).

24 These institutions might also be particularly sensitive to regulation of their behavior due to a perception that
any limitations are likely to handicap the state. This political factor is salient in the discussions in Section 1.3.

25 This is discussed further in Section 1.3.
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This report aims to make three contributions:

1. It describes types of international agreements that have not yet been discussed widely

in the literature.

2. For each agreement type, it explores workable verification mechanisms.

3. Based on political needs and the technical frontier, it describes opportunities for near-

term research, investment, and policy to improve prospects for AI verification.

The report has five sections. First, the remainder of the introduction will clarify the report’s

scope and then go on to summarize why international agreements over AI are desirable,

why some of them need to be verifiable, and why designing verifiable agreements over AI

is challenging. Second, a curated set of verification components is surveyed and analyzed.

These are the ingredients for any recipe for AI verification, and they each have diverging

limitations and strengths. Third, a set of political options and tradeoffs are examined for AI

verification. For any given international agreement relating to AI, political choices may need

to be made on some or all of these dimensions. Fourth, families of potential international

agreements are described along with particular implementation options, as well as verifica-

tion options that could work for those implementations. The agreements analyzed include

agreements that provide international regulation of AI development and deployment. Fifth,

the conclusion summarizes the key takeaways of the analysis and outlines priority areas for

future work.

1.1 Scope

1.1.1 AI types

This report aims for a broad perspective, but it does emphasize certain kinds and uses of AI

more than others. Specifically, we focus on a) large-scale AI26 and b) highly sensitive uses of

AI. The emphasis on large-scale AI is for two reasons. First, large models have been respon-

sible for the majority of the rapid advances in AI capabilities in recent years, and they have

been the focus of the corresponding discussions of risk and governance.27 Second, large

models and large-scale AI projects28 are relatively easy to govern and verify compared to

26 Multiple terms exist for large-scale AI efforts that might be correspondingly powerful and risky. These
include “frontier AI”, “transformative AI”, and “advanced AI” as well as the more speculative “artificial general
intelligence” and “superintelligence”. This paper will employ none of these terms explicitly, since each term is
primarily useful in other domains (such as domestic regulation) or is oriented around technical or philosophical
claims rather than political impacts. This report emphasizes the international politics of AI and thus employs
only generic terminology with one exception: the introduction of systemically risky AI in Section 4.3 (see also Ap-
pendix H) to denote AI systems with the potential to create extraordinary dangers for multiple states.

27 ChatGPT and GPT-4 from OpenAI were widely recognized as significantly shifting the frontier of AI capa-
bility and usability. A flurry of similarly large models have since been released. Overall, these broadly capable
models appear to be the primary impetus for much of the society-wide conversation about AI’s opportunities
and risks.

28 Note that large-scale AI projects can involve the intensive use of resources without necessarily involving
the creation of large models: for example, a project might require large amounts of AI inference using an
existing model.
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their smaller cousins.29 However, it should be noted that this emphasis on large models

does not imply an emphasis only on large clusters of AI-specialized compute such as large

data centers. While large clusters of compute will certainly be relevant for certain kinds of

governance and verification, the fact that leading AI models can be trained across multiple

data centers means that, even for very large training runs, Verifiers will need to be able to ver-

ify whether trainings being completed within different data centers at different times are for

the same model or for unrelated models.30 Concretely, this report assumes that distributed

training is workable with minimal efficiency losses.31 In the same vein, this report assumes

that algorithmic progress could be rapid, thus enabling greatly expanded capabilities per

unit compute.32 In sum, despite a slight emphasis on the governance of larger models, this

report aims to propose verification mechanisms that could scale up in a way that allows the

verification of rules even for relatively small models that are produced in great quantities.33

The second emphasis is on relatively sensitive uses of AI. As will be explored in more detail

later, there are strong reasons to believe that in highly sensitive domains—such as state mil-

itary or intelligence activities—verification of governance rules will be dramatically harder.

The nature of these domains means that verification mechanisms will need to be able to do

their job effectively while minimizing the revelation of information that is unrelated to the

agreement. Very few verification mechanisms have characteristics that make them workable

in such domains, and by comparison, low-sensitivity domains can reasonably be verified us-

ing a broader array of tools. For that reason, and because of the importance of these domains,

the report conservatively emphasizes analysis of highly sensitive domains.

1.1.2 Agreement types

This report outlines a number of families of international agreements. Agreement types

were chosen for inclusion based on two filters: 1) that the agreements need to be international

29 The largest models as of this writing require tens of thousands of cutting-edge AI chips to create—costing
a total of hundreds of millions of dollars. The creation of large models thus has a large associated footprint
in computational power, money, energy, and physical space. By comparison, once created, open source large
models can be modified and deployed using widely available consumer hardware, and therefore small changes
can be made and minimal inference conducted for only thousands of dollars. Therefore, the creation of small
models, or the deployment (as opposed to creation) of larger open source models, may have footprints that are
drastically smaller. Thus these are much harder to govern.

30 ‘Gemini 1.5: Unlocking Multimodal Understanding across Millions of Tokens of Context’ (arXiv, 8 August
2024), http://arxiv.org/abs/2403.05530, page 7.

31 This choice is made for three major reasons. First, this assumption makes the verification problem harder,
so if this assumption turns out to be wrong we will still have laid out plans that could work. Second, distributed
training has already been demonstrated with Gemini (Georgiev et al., 2024) as well as with other recent research
results (e.g, Jaghouar et al., 2024 and Peng et al., 2024). Third, calculations in Scher and Thiergart (2024) indicate
that it is difficult to rule out the potential of distributed training, thus suggesting that relatively efficient distributed
training is likely to be tractable.

32 This is also the conservative assumption, since if we assume no future algorithmic progress, we could be
left flailing if rapid advances occur. see Appendix E for more about the challenges for verification and some
potential solutions. Furthermore, there is ample evidence of rapid historical and ongoing progress in algorithmic
efficiency. Anson Ho et al., ‘Algorithmic Progress in Language Models’ (arXiv, 9 March 2024), https://doi.or
g/10.48550/arXiv.2403.05812.

33 Important caveats to this point are described in the report, including important tradeoffs regarding the
amount of compute that might need to be governed (Section 3.2) and the underexplored challenge of verify-
ing either AI agents or AI systems that are designed to use external tools (Section 2.5.3).
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and 2) that verification of the agreement must be both possible in theory and provide non-trivial

assurances. Agreements are further organized into families on the basis of their verification

requirements, not other political dimensions. Each of these points will be expanded in turn.

International agreements are agreements that involve at least two states.34 This report does not

presume that any particular states are involved in the agreements.

Only certain agreements are verifiable in theory but also have non-trivial verification needs.

Verifiability-in-theory means that compliance or non-compliance with the agreement would

lead to evidence that could in theory become known to the Verifier. For example, unverifi-

able agreements could relate to claims about unobservable activities or about the intent of

actions, rather than claims about the observable implications of actions. While declarations

of intent can be valuable for building and maintaining norms, they are not verifiable claims.

Thus, this report will not consider agreements that are solely about mental states such as de-

clared beliefs or intents. Instead, the report will focus on agreements with observable struc-

ture or outcomes which can be perceived.35 For example, an agreement that stipulates rules

about the location and disposition of specific physical objects would be verifiable in theory.

Furthermore, agreements that are trivially verifiable will not be explored in this report. Triv-

ially verified agreements include agreements with obvious and readily observable conse-

quences, such as money being sent to an account, a model being published, or a shipment

of chips being delivered to a state. Any action that can be fully understood quickly and

easily due to its immediate and overt real-world consequences does not need a verification

regime.36 An important caveat is that some overt actions can contain subtle deception. For

example, a delivered set of chips might have been secretly modified to serve the sender’s

strategic goals and undermine the receiver’s goals.37 Efforts to ascertain whether a declared

agreement is being secretly undermined are certainly within the scope of this report. In sum,

this report considers agreements with consequences that can be legible to another state. It

therefore includes categories such as knowledge or resources transfers, the pooling of re-

sources, preparation for emergencies, and regulation (see Section 4).38

The question of whether agreements are verifiable in theory should not be confused with the

question of whether these agreements are verifiable in practice. As described above, verifiable-

in-theory means that a perfectly privacy-preserving verification mechanism would have the

potential to verify that agreement.39 Whether an agreement is verifiable-in-practice is a more

multifaceted question, and grappling with this question is the primary goal of this report.

34 This includes agreements that are bilateral—between two states; minilateral—involving small groups of
states; and multilateral—aiming for broader or universal participation.

35 There are many potential challenges in verifying consequences, including that consequences might be de-
layed, subtle, or deliberately hidden by the Prover.

36 These kinds of agreements may be very useful complements to the agreements discussed in this report.
37 Another example is Provers providing information that is deliberately falsified in a way that is difficult to

catch. See Section 4.1.
38 Tacit agreements could in theory be verified in some cases, but this report does not deeply explore this

domain other than a discussion of the limitations of unilateral verification for AI regulation (see Section 1.5.3).
39 As explored throughout the report, computational methods for such mechanisms already exist in

some domains.
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The report will focus on the potential for robust verification of the various agreement types

in scenarios where states are paradoxically seeking to demonstrate compliance to each other

while simultaneously seeking ways to circumvent verification.40 Unilateral verification capa-

bilities such as national technical means are also examined as part of the equation. Over-

all, the emphasis is on verification approaches which can robustly, even if imperfectly,41

demonstrate compliance among states and other actors.42 This report emphasizes families

of verification techniques that appear to be well-suited for the political goals of states, and

have the potential to reassure both sides about their mutual compliance. Other mechanisms

that are less reliable, or that are likely to be politically impossible, will be mentioned but

not emphasized.

Agreements are organized into families according to similarities in their verification require-

ments rather than other aspects of the agreement, such as their political structure, effective-

ness, distribution of benefits, political feasibility, or enforcement. Other work has explored

these questions,43 and we provide a different way of organizing the discussion, which is not

intended to be definitive or exhaustive.44 This also means that the detailed political content

of agreements—such as specific regulatory rules—will not be deeply explored in this report.

As noted earlier, verification capabilities open up a space for political options. Therefore, the

techniques discussed in this report are also intended to help future discussions about political

agreements succeed.45 Moreover, even within the realm of verification, political questions

abound. These latter questions are expanded in Section 3.

1.1.3 Verification mechanisms

This report contains a survey of some verification approaches for AI. This survey is broad

but not exhaustive, and aims to provide an overview of both a) the potential and limitations

of the various kinds of mechanisms and b) why specific mechanisms appear to be well-suited

for verifying particular kinds of agreements.

40 This framing is sometimes termed the “covert adversary”. A covert adversary is a theoretical actor who will
comply with verification protocols only to the extent that they could be caught attempting to circumvent those
protocols. In short, they’ll cheat if they can get away with it. See Yonatan Aumann and Yehuda Lindell, ‘Security
Against Covert Adversaries: Efficient Protocols for Realistic Adversaries’, in Theory of Cryptography, ed. Salil P.
Vadhan (Berlin, Heidelberg: Springer, 2007), 137–56, https://doi.org/10.1007/978-3-540-70936-7_8.

41 US Secretary of State George Shultz testified in 1988 regarding the INF treaty that “There is no such thing
as absolute, 100 percent verification. But it is our judgment that this treaty, through its successive layers of
procedures, contains the measures needed for effective verification…. The bottom line is that the verification
provisions of this treaty get the job done.” Rose Gottemoeller, ‘Looking Back: The Intermediate-Range Nuclear
Forces Treaty’ (Arms Control Today, 2007), https://www.armscontrol.org/act/2007-06/looking-back-i
ntermediate-range-nuclear-forces-treaty.

42 The presumption is that less robust mechanisms will be easier to design and implement. While these may
be very valuable to develop in order to serve particular political needs, this is not our focus.

43 In addition to specific proposals, work comparing approaches includes; Matthijs M. Maas and José Jaime Vil-
lalobos, ‘International AI Institutions: A Literature Review of Models, Examples, and Proposals’, SSRN Scholarly
Paper (Rochester, NY, 22 September 2023), https://doi.org/10.2139/ssrn.4579773; Robert Trager et al.,
‘International Governance of Civilian AI: A Jurisdictional Certification Approach’ (Oxford Martin AI Governance
Initiative, 2023).

44 This report’s focus on the verification of international agreements necessarily means that many other mean-
ingful political dimensions will be underexplored or left out entirely. This prioritization reflects the goals of this
report, not the overall importance of the different dimensions.

45 Inclusion of an agreement type in this report should not be regarded as an endorsement.
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Table 1.1: Agreements examined in this report.

Agreement family Agreement types Variants

Share research

Share knowledge of AI risks and oppor-
tunities

Share AI development knowledge

Transfer

knowledge

Share safety-enhancing technologies

Share AI-specialized chips

Share access to AI-specialized
computeTransfer development resources

Training programs for AI pro-
fessionals

Transfer completed models
Provide access to AI systems

Provide API access

Cash transfers

Deploy AI-enabled devices as
aid

Transfer

resources

Share benefits

Transfer AI-enabled devices

Pool resources toward an international
goal

Pool resources toward defensive AIs

Pool resources toward transformative
AI

Pool

resources

Pursue systemically risky AI only in a
singular project

Prepare for

emergencies

Computational emergency detection
and response

Regulate data center-based AI
development

Regulate AI development
Regulate fine-tuning and on-
line learning

Regulating data center infer-
ence

Regulate

Regulate AI deployment
Regulating sensitive mobile
AI-enabled devices
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We include both widely-used mature concepts and technologies, as well as approaches which

are speculative to varying degrees. However, we limit discussion of the most speculative

methods, instead focusing on verification mechanisms that are available already or can po-

tentially be made available soon (e.g., within a few years).

Mechanisms will also be examined in terms of their political characteristics, including a)

their ability to verify agreement(s), b) their ability to address transparency-security tradeoffs,

and c) their robustness against covert circumvention attempts. This report does not explicitly

examine confidence-building measures,46 although many of the techniques described herein

would also be applicable to such efforts.

1.2 Methodology

The ideas in this report were generated through a review of the relevant literature and a se-

ries of informal cross-disciplinary idea exchanges and conversations. Overall, this document

attempts to be a synthesis of the key areas of related disciplines (e.g., cryptography, machine

learning, and verification in International Relations) as well as an analysis of how the knowl-

edge of these disciplines can be brought together to shape our sense of what is possible in

AI verification today, as well as what might be possible in the future. Omissions and errors

are inevitable in a work of this scope. Nonetheless, the authors hope that this report informs

and broadens future conversations in this crucial field.

1.3 Political needs and political will

Detailed discussions of the political needs for international AI governance are outside the

scope of this report. Nonetheless, to highlight the importance of the topics at hand, we pro-

vide a brief list of reasons why verifiable international AI governance might be desirable

for states. States might work together via verifiable international agreements to create new

economic opportunities, preserve peace, and mitigate other risks.

Creating new economic opportunities is a clear and salient priority for many state govern-

ments today.47 By creating effective and harmonized regulations, states can reap the poten-

tially enormous benefits of AI.48 Absent such harmonized regulations, cross-border trade in

AI-related goods and services might be sharply limited, and entire sub-industries may fail to

46 Confidence building measures, such as used by the Biological Weapons Convention, are useful in the absence
of an agreed-upon regime, and may function as adjuncts to verification, but are not themselves intended to
be verified or verifiable. See also Michael C Horowitz and Paul Scharre, ‘AI and International Stability: Risks
and Confidence-Building Measures’ (Center for a New American Security), accessed 25 October 2024, https:
//www.cnas.org/publications/reports/ai-and-international-stability-risks-and-confidence-bui
lding-measures.

47 ‘Statement on Inclusive and Sustainable Artificial Intelligence for People and the Planet’ (Paris AI Action
Summit, 11 February 2025), https://www.elysee.fr/en/emmanuel-macron/2025/02/11/statement-on-inc
lusive-and-sustainable-artificial-intelligence-for-people-and-the-planet.

48 Claire Dennis et al., ‘What Should Be Internationalised in AI Governance?’ (Oxford Martin AI Governance
Initiative, 2024).
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reach their full potential.49 The creation of robust standardized rules for interoperable eco-

nomic systems has been enormously influential in other domains, such as civil aviation or

maritime shipping. A failure to regulate and standardize internationally might have stymied

the growth of the networks for aviation and shipping that now span the globe. Similarly, the

AI industry could be hampered by fragmentation, regulatory arbitrage, and the potential

for industry-wide reputational damage due to a disaster. This final possibility is particularly

instructive, given how the Three Mile Island and Chernobyl nuclear accidents affected the

prospects for civilian nuclear energy.50

Preventing war is also of central concern. At least two pathways to war are already salient

today. First, arms races can be extraordinarily expensive and lead to rapidly increasing per-

ceptions of mutual threat. Today, a race toward leadership in civilian AI is already underway

and AI is increasingly perceived to be central to military power.51 An unconstrained arms

race in this domain could consume vast resources that states would otherwise prefer to put

toward other uses—thus raising the risk of war due to the desire to reduce their need for arm-

ing in the future.52 Furthermore, major investments in AI-enabled military hardware may

significantly increase the threat that states perceive from each other’s weaponry.53 Second,

racing can also create systemic pressures toward a major war: the pursuit of greater relative

power by one state can incentivize other states to wage preventive war to stave off what they

perceive to be a major shift in military power. Concerns of this general shape are certainly

not new,54 but some policy elites consider this a real possibility for the near future.55 In sum,

these two pathways mean that failing to adequately govern AI internationally could lead to

costly and dangerous arms races or even a major war.

49 Sub-industries that might fail to reach their full potential without AI verification in particular could include
AI services that process sensitive personal, business, or state data or which provide high-sensitivity services (e.g.,
government services or military & intelligence capabilities), to states themselves.

50 Bulat Aytbaev et al., ‘Don’t Let Nuclear Accidents Scare You Away from Nuclear Power’, Bulletin of the Atomic
Scientists, 31 August 2020, https://thebulletin.org/2020/08/dont-let-nuclear-accidents-scare-you
-away-from-nuclear-power/.

51 Nestor Maslej et al., ‘The AI Index 2025 Annual Report’ (AI Index Steering Committee, Institute for Human-
Centered AI, Stanford University, April 2025); James Black et al., ‘Strategic Competition in the Age of AI: Emerg-
ing Risks and Opportunities from Military Use of Artificial Intelligence’ (RAND, 2024).

52 As explored in various parts of the International Relations literature, states might start wars because maintain-
ing the status quo is too costly for them. Robert Powell, ‘Guns, Butter, and Anarchy’, American Political Science
Review 87, no. 1 (1993): 115–32; Andrew Coe, ‘Costly Peace: A New Rationalist Explanation for War’ (2011).

53 This is particularly true if AI has an effect on the overall offense-defense balance of strategic weaponry. Un-
fortunately, there is no guarantee that the dominance of defensive nuclear deterrence that has undergirded peace
for decades will remain unchanged as AI enters the equation. See also Chris Meserole, ‘Artificial Intelligence and
the Security Dilemma’, Lawfare (Lawfare, 4 November 2018), https://www.lawfaremedia.org/article/art
ificial-intelligence-and-security-dilemma; James Johnson, ‘AI-Security Dilemma: Insecurity, Mistrust,
and Misperception under the Nuclear Shadow’, in AI and the Bomb: Nuclear Strategy and Risk in the Digital Age
(Oxford University Press, 2023), https://doi.org/10.1093/oso/9780192858184.003.0005.

54 In 1960, Thomas Schelling wrote, “A nation known to be on the threshold of an absolutely potent surprise-
attack weapon may have reason to forswear it unilaterally—if there is any possible way to do so—in order to
forestall a desperate last-minute attempt by an enemy to strike first while he still has a chance.” Thomas C
Schelling, The Strategy of Conflict (Harvard University Press, 1960), p. 133.

55 Along those lines, Schmidt et al. argue that “[i]n the event that the identity of a winner [of the AI race] does
crystallize, mere competition could devolve into conflicts driven by desperation and fear,” to the extent that
“some states may seem the advent of AI threatening enough to demand a nuclear response.” Henry Kissinger,
Eric Schmidt, and Craig Mundie, Genesis: Artificial Intelligence, Hope, and the Human Spirit (Little Brown and
Company, 2024).
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Other risks may also be a clear priority for many states, including the proliferation of dan-

gerous capabilities, exacerbated inequality, and large-scale harms due to accidents or mis-

use. Terrorists or rogue states in possession of dangerous capabilities might be particularly

likely to use them against other states.56 On the flip side, centralization of AI’s benefits could

greatly exacerbate economic inequality both within and among states—which in turn can

lead to political destabilization and even conflict. In response to a similar set of political

needs with other technologies, states have constructed governance regimes that manage the

danger of proliferation while allowing civilian use of the same technologies.57 In particular,

International Atomic Energy Agency (IAEA) safeguards have facilitated civil nuclear transfers

by providing assurances to states that no transferred technology or material will be used for

nuclear weapon development. A set of related multilateral export control regimes for sen-

sitive technologies and materials was built in the decades after the IAEA safeguards regime

took shape.58

Finally, the potential for AI to have scalable effects on the world means that AI accidents

or misuse might cause harm on a vast scale.59 Preventing both accidents and misuse is

extremely difficult due to fundamental aspects of the technology and how it is being em-

ployed.60 Moreover, competition in the economic and military domains makes these prob-

lems more likely.61 Driven in part by increasingly urgent messaging from civil society and

industry leaders, governments are increasingly recognizing these issues.62 To manage these

56 Markus Anderljung and Julian Hazell, ‘Protecting Society from AI Misuse: When Are Restrictions on Capa-
bilities Warranted?’ (arXiv, 29 March 2023), https://doi.org/10.48550/arXiv.2303.09377.

57 Jane Vaynman and Tristan A. Volpe, ‘Dual Use Deception: How Technology Shapes Cooperation in Interna-
tional Relations’, International Organization 77, no. 3 (March 2023): 599–632, https://doi.org/10.1017/S0
020818323000140.

58 In particular, such regimes were built for technologies and materials enabling the construction of nuclear,
biological, and chemical weapons as well as long-range missiles. See ‘Guidelines’, Nuclear Suppliers Group; ‘Com-
mon Control Lists’, Australia Group; ‘Equipment, Software And Technology Annex’ (Missile Technology Control
Regime, 14 March 2024).

59 While most technologies are limited to local effects, AI is poised to create global effects. Two pathways to
such impact include 1) interactions with our existing globe-spanning digital infrastructure and 2) the increasing
intelligence and autonomy we provide to some AI systems—which might enable them to drastically expand
their impacts.

60 Brian Christian, The Alignment Problem: Machine Learning and Human Values (WW Norton & Company,
2020); Yoshua Bengio, et al., ‘International AI Safety Report’, 29 Jan 2025.

61 Stuart Armstrong, Nick Bostrom, and Carl Shulman, ‘Racing to the Precipice: A Model of Artificial Intelli-
gence Development’, AI & Society 31, no. 2 (2016): 201–6; Amanda Askell, Miles Brundage, and Gillian Hadfield,
‘The Role of Cooperation in Responsible AI Development’ (arXiv, 10 July 2019), http://arxiv.org/abs/1907.0
4534; Eoghan Stafford, Robert F Trager, and Allan Dafoe, ‘Safety Not Guaranteed: International Races for Risky
Technologies’ (November 2022), https://cdn.governance.ai/International_Races_for_Risky_Technolo
gies_DRAFT_NOV_2022.pdf; Robert F. Trager et al., ‘Safety-Performance Tradeoff Model: Exploring Safety In-
sights in AI Competition’, Modeling Cooperation, December 2022, https://spt.modelingcooperation.com/.

62 ‘Statement on AI Risk’, Center for AI Safety, 30 May 2023, https://www.safe.ai/statement-on-ai-risk;
‘The Bletchley Declaration by Countries Attending the AI Safety Summit, 1-2 November 2023’, GOV.UK, accessed
2 November 2023, https://www.gov.uk/government/publications/ai-safety-summit-2023-the-bletc
hley-declaration/the-bletchley-declaration-by-countries-attending-the-ai-safety-summit-1-2
-november-2023.
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risks, governments may take a variety of actions, including some that require international

cooperation in order to be effective.63

In sum, the political needs for international cooperation over AI may include the creation of

new economic frontiers, the preservation of peace, and the mitigation of substantial risks to

society. The remainder of this report aims to clarify how states can verifiably move together

toward some of these goals if they choose to do so.

1.4 Importance of AI agreement verification

Verification is central to most high-stakes international agreements, and it serves three key

purposes. First, a verification system aims to detect non-compliance, which is crucial to in-

form enforcement. Second, verification deters parties from even contemplating a deliberate

violation by setting the expectation that such violations will be detected. And third, verifica-

tion helps build confidence by permitting compliant parties to demonstrate their compliance

in an open, official, systematic, and continuing way.64

These elements can also be illustrated by theories on how cooperative equilibria can be

achieved within iterated social dilemmas. In a typical social dilemma such as the prisoner’s

dilemma, the all-cooperate outcome is preferred by all agents compared to the all-defect

outcome—but the cooperative equilibrium is only available in specific circumstances, such

as an iterated game with patient players.65 One of the main requirements for such an equi-

librium is that each agent needs to be able to detect whether the other party is defecting.

This is precisely the kind of information provided by a robust verification protocol. The

comparative desirability of the cooperative equilibrium is what drives agents to try to make

themselves legible to one another. A further factor is the expectation of future interactions.

If agents expect numerous and frequent interactions in the future, they will also expect less

overall utility if they defect and the other agent detects that defection, since the other agent

can be expected to punish them in subsequent rounds.66 The expectation of punishment

63 For example, extremely dangerous AI capabilities can be banned or verifiably placed explicitly under the
command of a state. Such capabilities might include the ability to produce chemical, biological, radiological,
nuclear, or cyber weapons as well as extreme social manipulation capabilities. One analogy is that no private
group in the world is legally allowed to hold nuclear weapons.

64 Coming to Terms with Security: A Handbook on Verification and Compliance (Geneva: United Nations
Institute for Disarmament Research, 2003).

65 Robert Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984).
66 In technical terms, the discount factor δ in an indefinite game can be stated as the probability of the two agents

interacting again in the future. In that sense, raising the effective frequency of interactions—or the rapidity with
which defection can be recognized and responded to—can push δ toward its theoretical maximum of 1. This
framing highlights the rapidity of interaction and response as opposed to the common alternative framing of
“patient” agents. Even fairly impatient agents can achieve cooperative equilibria if their interactions occur with
high frequency.
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in response to defection will increase the likelihood of cooperative behavior.67 Ultimately,

these factors mean that agents need both verification and enforcement of agreements to solve

social dilemmas. This report focuses on verification but acknowledges that enforcement will

also be needed.

Furthermore, this report emphasizes both agreements and verification mechanisms that fo-

cus on earlier rather than later aspects of the AI value chain. For example, we emphasize

mechanisms for controlling the models that can be created in the first place, as opposed to

mechanisms for controlling the use of those models. While in the analysis that follows we

attempt to be systematic, we emphasize the governance of upstream factors in the produc-

tion of AI systems because those factors tend to be more amenable to stable governance via

iterated agreements such as those described above. This emphasis is further reinforced by

theoretical and practical arguments that indicate that political agreements which focus on the

“roots” of power rather than power itself—such as coal and steel resources rather than tanks—

allow states to achieve more robust and useful agreements.68 Given that there is substantial

uncertainty about how powerful AI will be—either in an economic or military sense—it is

also prudent to preferentially aim agreements primarily at the ways in which AI systems can

be produced, since those agreements are likely to be robust to a wider range of potential

futures than comparable agreements that focus only on the specific downstream effects and

uses of AI.69 The rest of this report emphasizes agreements centered on roots of power that

are upstream of power itself, such as the creation rather than the deployment of models, AI-

specialized compute resources, and the supply chains that create both AI chips themselves

and all of their requisite inputs. While the degree to which an agreement focuses on such up-

stream resources is a political question and thus outside the scope of this report, this report

will nonetheless emphasize iteration on upstream resources because they allow more robust

verifiable agreements than similar efforts aimed at controlling downstream effects.

In some cases, feasible verification may be a necessary condition for negotiating an interna-

tional agreement in the first place, especially when undetected defection is deemed unac-

ceptable for a state’s security. For example, states did not agree to the Chemical Weapons

67 Intuitive examples of two extremes of this dynamic are interstate war and cyber attacks. Interstate war tends
to involve very little ambiguity over who the parties to the conflict are—and punishment is implicit in the process
via the costs of war. A state considering an overt attack on another state will know that both the defending state
will correctly perceive that it is being attacked and will likely respond with its own use of force. Since war is
costly, the potential aggressor knows that it will face at least some punishment if it attacks (“defection” in the
language of social dilemmas). By contrast, cyber attacks do not generally allow for reliable attribution, so a state
under attack generally does not know precisely who is attacking. This lack of attribution makes punishment
much less credible, and thus aggressors are not as deterred by the costs of conflict in cyber attacks as they are
in conventional war. These differing dynamics help clarify why interstate war is very rare while cyber attacks
are ubiquitous.

68 Thomas Chadefaux, ‘Bargaining over Power: When Do Shifts in Power Lead to War?’, International Theory
3, no. 2 (2011): 228–53.

69 For example, there is no guarantee that the military use of AI will lead toward continued or renewed deter-
rence dominance like nuclear weapons and their delivery systems did. This uncertainty will eventually fade as
the true shape of AI’s effect on military affairs becomes discernible in the coming years, but for now strategic rea-
soning about such effects must acknowledge substantial uncertainty and thus consider a wide range of possible
effects, including a substantial shift away from deterrence dominance.
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Convention until the problem of verification had been solved, which took decades.70 By con-

trast, some agreements cannot be fully verified due to their nature, yet states may be willing

to accept them. For instance, the Biological Weapons Convention does not have a verification

protocol, partly because great powers have found it unlikely that covert violations would se-

riously threaten their security.71 The kinds of regulation that might be acceptable for a state

is also influenced by the perceived strategic value of the weapon, including the availability

of substitutes. For instance, biological weapons were perceived to have lower military utility

than chemical weapons72 and nuclear weapons.73

In the case of AI, demonstrating that verification is feasible may be crucial to unlocking in-

ternational agreements. Given AI’s potentially high strategic value, states may require signif-

icant certainty that their counterparties are not defecting from the agreement and therefore

may require robust verification protocols to be part of any major agreement. If the agree-

ment is perceived to be high-stakes, a covert defection might be regarded as an unaccept-

able security danger, and thus the political need for reliable verification would increase. If

sufficiently reliable verification mechanisms are unavailable or perceived to be politically

unacceptable, such a strategic scenario might not lead to an agreement despite such an equi-

librium being more desirable for all states than the default outcome.74 However, if defection

can be quickly and accurately detected, the credible threat of reliable enforcement can create

a stable cooperative equilibrium.75

1.5 Challenges of AI agreement verification

Three areas of background knowledge are particularly valuable for AI verification: the

transparency-security tradeoff, the asymmetric burden of proof for verifying negative

claims, and a broad sense of how AI is created, tested, and deployed today. Each will be

explored in turn.

70 Thomas Bernauer, The Projected Chemical Weapons Convention: A Guide to the Negotiations in the Con-
ference on Disarmament (New York: United Nations Institute for Disarmament Research, 1990), p 19.

71 Marie Isabelle Chevrier, ‘Verifying the Unverifiable: Lessons from the Biological Weapons Convention’, Pol-
itics and the Life Sciences 9, no. 1 (1990): 93–105, https://doi.org/10.1017/S073093840001025X.

72 For example, a UN report notes the following: “The United States and the UK were of the view that the
military value of biological weapons was inferior to that of chemical weapons.” Thomas Bernauer, The Projected
Chemical Weapons Convention: A Guide to the Negotiations in the Conference on Disarmament (New York:
United Nations Institute for Disarmament Research, 1990).

73 Regarding the relationship between biological and nuclear weapons, Richard Nixon is alleged to have said,
“We’ll never use the damn germs, so what good is biological warfare as a deterrent?” as well as “If somebody uses
germs on us, we’ll nuke ’em.” David Hoffman, The Dead Hand: The Untold Story of the Cold War Arms Race
and Its Dangerous Legacy (Anchor, 2009).

74 Analogously, the cooperation equilibrium of the prisoner’s dilemma is better for all players than mutual
defection but might be unreachable unless players have sufficient ability to detect and punish defections in an
iterated game

75 Related to this, the concept of a “break out time” in nuclear verification—the approximate amount of time it
would take a state to create a nuclear weapon—in turn affects calculations of the minimum politically acceptable
frequency for nuclear verification processes.
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1.5.1 Transparency-security tradeoff

Some verifiable agreements are intensely affected by a fundamental tradeoff between trans-

parency and security.76 While sufficient information transparency is necessary to verify

compliance, states will attempt to limit transparency to preserve the confidentiality of in-

formation that is crucial for national security.77 For example, on-site inspections of nu-

clear weapons at a military base may also reveal to inspectors important information about

the host state, such as details about their capabilities and vulnerabilities—which adversaries

can exploit.78

The severity of the tradeoff varies for different approaches to verification, and hinges par-

ticularly on the sensitivity of the information involved, the specificity of the information re-

vealed, and the usefulness of unilateral monitoring. High-sensitivity information can make

the tradeoff severe, as it was when Saddam Hussein continued to obstruct inspections by the

UN Special Commission due to concerns that they might disclose sensitive information on

the security regime apparatus that foreign powers could later leverage to attack his regime.79

Information specificity is also crucial, since a verification mechanism that could demon-

strate compliance without revealing any extraneous information may face no transparency-

security tradeoff at all. Unfortunately, mechanisms proposed historically often required or

allowed the Verifier to access information that was not directly relevant to the agreement. For

example, one of the main reasons the Biological Weapons Convention lacks a formal veri-

fication protocol is that, given the thin line between offensive and defensive uses, effective

verification would entail the Verifier gathering information on the civilian biotechnology in-

dustry, potentially including trade secrets.80 A state’s unilateral monitoring capabilities play

a role in the transparency-security tradeoff because they shape the overall information secu-

rity context in which decisions about verification mechanisms are being made. In a hypothet-

ical scenario where unilateral monitoring—such as the actions of intelligence agencies—can

be expected to have revealed all of the extraneous information that might have been acciden-

76 Andrew J. Coe and Jane Vaynman, ‘Why Arms Control Is so Rare’, American Political Science Review 114, no.
2 (2020): 342–55.

77 A similar tradeoff would of course apply to sensitive information belonging to corporations and individuals.
This report does not fully explore this family of related tradeoffs. Instead, this report centers the transparency-
security tradeoff since it seems to be a particularly intense tradeoff for many potential agreement types and
verification mechanisms. Furthermore, if a set of mechanisms can reassure extremely sensitive institutions such
as militaries and intelligence agencies that their security is being protected, then similar mechanisms can likely
be used to appropriately protect commercial and personal information in most cases.

78 Such information could be of many potential kinds. Section 1.5.1.1 discusses the sensitivity of location infor-
mation for military assets. Another possibility is that a state is bluffing about its power on the international stage,
and a verification mechanism might inadvertently reveal their bluff.

79 Gregory D. Koblentz, ‘Saddam versus the Inspectors: The Impact of Regime Security on the Verification of
Iraq’s WMD Disarmament’, Journal of Strategic Studies 41, no. 3 (16 April 2018): 372–409, https://doi.org/10
.1080/01402390.2016.1224764.

80 Guy B. Roberts, Arms Control without Arms Control: The Failure of the Biological Weapons Convention
Protocol and a New Paradigm for Fighting the Threat of Biological Weapons (USAF Institute for National Security
Studies, 2003).
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tally revealed via a proposed verification mechanism, then that mechanism does not face a

transparency-security tradeoff at all—there is nothing more to reveal.81

Subsequent sections of this report explore the transparency-security tradeoff in further de-

tail. While severe tradeoffs are certainly possible in the verification of international AI gov-

ernance agreements, it also appears likely that workable tradeoffs can be achieved for the

verification of most of the agreements explored in this report.82

1.5.1.1 Security sensitivity of detailed location information

One example of the transparency-security tradeoff discussed in this report is the fact that

location data is useful for verification, but revealing this data can create perceived security

vulnerabilities. Location data from the Prover related to personnel or digital systems could

help the Verifier check whether compliance is ongoing. For example, it might be very useful

for a chip-centered agreement if the Verifier could inspect data centers and find all chips in

their declared locations. The problem is that if sensitive organizations like militaries believe

that these chips are a crucial component of their military power, then they will not want the

locations of all their chips to be knowable by the Verifier.83 A similar issue arises if the Prover

must make verifiable claims about the detailed activities of key personnel.84

There are reasons for cautious optimism that this challenge can be overcome. One technique

that is explored later in this report allows robust verification and monitoring of resources via

specialized hardware while simultaneously making that hardware impossible to locate accu-

rately. The combination of locally stringent verification mechanisms with deliberate obfus-

cation of locations can allow for detailed monitoring of hardware even when that hardware

is physically hidden (see Section 2.5.4.2).

1.5.2 Asymmetric burden of proof for verifying

negative claims

Demonstrating or verifying the existence of an object or process is often straightforward

compared to the difficulty of demonstrating the non-existence of an object or process. For

example, it’s trivial for a state to demonstrate that it has a key AI capability—it can simply

demonstrate that capability.85 By contrast, demonstrating that they do not have a given capa-
81 A related but very different scenario involves unilateral monitoring capabilities that create enough trans-

parency that the agreement is workable. Such scenarios occurred historically even for central military tech-
nologies, such as the naval treaties of the early 20th century and some of the nuclear arms control treaties
during the Cold War. Wawrzyniec Muszyński-Sulima, ‘Cold War in Space: Reconnaissance Satellites and
US-Soviet Security Competition’, European Journal of American Studies 18, no. 2 (30 June 2023), https:
//doi.org/10.4000/ejas.20427.

82 As noted later, the verification approaches described for regulatory agreements will require serious imple-
mentation work to begin at least a year—and perhaps a few years—before full-scale verification can be done.

83 Even below the threshold of war, a potential attacker planning a cyber attack on the Prover might benefit
from knowing the locations of relevant hardware.

84 The transparency-security tradeoff for location information might be quite salient for militaries but much
less important for civilian organizations such as businesses. Therefore, high-accuracy location mechanisms
might be politically tolerable for some categories of civilian technology.

85 Similarly, the established method of proving that you have nuclear weapons is to detonate one.
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bility might have a significant burden of proof; it might be challenging to produce credible

evidence for the claim.86 To acquire high confidence in the truth of a negative claim like

this, a Verifier may need to be provided with significant quantities of relevant evidence of

various kinds.87

This asymmetry shows up constantly in discussions of verification. Regardless of practical

difficulties, it is epistemically straightforward for a Prover state to make itself legible to the

Verifier with regards to known or declared objects, facilities, processes, and people. This can-

not be said, however, for the hypothetically extant but unknown or undeclared objects, facil-

ities, processes, or people. While a Prover might be able to provide a highly credible story

about the work done by a given team, it’s very hard for them to demonstrate that no team ex-

ists doing a particular kind of work. Similarly, while a Prover might be able to demonstrate

legal codes and even enforcement actions within their domestic laws, they would have great

difficulty demonstrating that they were not taking other hidden actions that countermanded

these laws.

Three parts of the practice of verification grapple with this asymmetry. First, verification

processes tend to be anchored on declared objects, sites, processes, and people, where robust

claims are relatively tractable since there are a limited number of such declarations and they

make concrete claims about reality.88 Second, parallel efforts are made to catch omissions

or inconsistencies in declarations—both to discover and to deter circumvention of agree-

ments.89 Third, verification processes can leverage the fact that a key input like computing

power has a known and finite quantity. Given this, the larger the quantity of declared or

acceptable activities that are fully accounted for, the smaller the possible scale of undeclared

or prohibited activities using that input.90

1.5.3 Why AI verification is particularly challenging

The field of AI is vast, and thus any discussion of its verification challenges will be incomplete.

This section will first compare AI with historical examples of strategically valuable technolo-

gies. Next, it will explore the challenges of achieving one of the agreement types explored

86 This challenge is similar to the one referred to by the colloquial claim that is impossible to prove a negative.
Steven D. Hales, ‘Thinking Tools: You Can Prove a Negative’, Think 4, no. 10 (2005): 109–12.

87 Verification techniques for such claims can draw upon similar techniques developed in formal logic for
proofs of impossibility, including the approach of proof by exhaustion—which aims to demonstrate a claim by
exhaustively examining all possible ways to check it.

88 Such declarations also make the AI ecosystem much more legible and possible to verify compared to an
ecosystem without such declarations. For example, even with substantial access to data about hardware usage, it
is very difficult to reliably classify workload types even if there are no attempts to hide the activities. See Lennart
Heim et al., ‘Governing Through The Cloud: The Intermediary Role Of Compute Providers In AI Regulation’
(Oxford Martin AI Governance Initiative, March 2024).

89 In general, organizing agreements around declarations can be useful for these reasons. Thanks to Mauricio
Baker for making this point.

90 A key input having a known and finite quantity is helpful towards governing AI through that input (Sastry
et al., 2024) but is not sufficient on its own. For example, there could be secret production of chips, making
an accounting based entirely on known chips misleading. Here still, though, there is a sense in which finitude
is friendly towards verification, in that the more monetary and human capital that a country invests in known
chip production, the less they will have available for secret production, so it may still be possible to make some
(approximate) estimates of the scale of uncertainty introduced by these possibilities.
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below—the regulation of AI models via rules about their development and deployment. In the

process of exploring this challenge, the general outlines of the AI industry will be provided,

including the key inputs to AI; how models are built and deployed; what kinds of regulations

might be implemented; and finally the overall challenge of regulation. We conclude that

unilateral verification alone cannot reliably verify compliance with AI regulation.

The international governance of strategically valuable technologies has a mixed history.

While there have been numerous attempts to govern important technologies, including mil-

itary aviation,91 chemical weapons,92 nuclear weapons,93 and biological weapons,94 where

such agreements have succeeded, they have been very limited in ambition. For example, the

various phases of nuclear arms control during the Cold War only managed to restrain some-

what the otherwise broad and wholesale development and deployment of these weapons.

Similarly, agreements over other technologies, such as biological and chemical weapons,

happened in the shadow of nuclear weapons, and at least some key actors perceived these

conversations to be relatively unimportant compared to the leading strategic technology—

nuclear weapons.95 A pessimistic reading of this history indicates that no significant restraint

was ever placed on strategically important military technology which had no substitutes. A

more balanced reading indicates that the advent of game-changing technologies sometimes

galvanized serious examination of governance structures that were unthinkable in other eras

or for other technologies.96 Overall, historical experience indicates that international gov-

ernance of strategically transformative technology is very difficult. One potential basis for

hope in the governance of AI is that the world of 2025 and beyond is very socially and techno-

logically different from the eras in which these other technologies emerged, so it is possible

that governance proposals that were out of reach for our ancestors will be within our grasp.

International regulation of AI must engage constructively with the shape of the technology

and the industry if it is to succeed, so what follows is a brief description of each. AI mod-

els are built from three fundamental components: 1) data—the text or other media used

to train the system; 2) algorithms—code that defines how data is transformed into a useful

model; and 3) compute—the computational hardware on which all of these calculations take

place. The fundamental resources for deployment are similar, though their proportion tends

to be different. All three major inputs are downstream of human capital today, since it is

currently humans who are doing (or guiding) the labor needed to provide these inputs.97

91 Waqar H. Zaidi, ‘ “Aviation Will Either Destroy or Save Our Civilization”: Proposals for the International
Control of Aviation, 1920—45’, Journal of Contemporary History 46, no. 1 (1 January 2011): 150–78, https:
//doi.org/10.1177/0022009410375257.

92 Thomas Bernauer, The Projected Chemical Weapons Convention: A Guide to the Negotiations in the Con-
ference on Disarmament (New York: United Nations Institute for Disarmament Research, 1990).

93 Waqar H. Zaidi, Technological Internationalism and World Order (Cambridge University Press, 2021).
94 Marie Isabelle Chevrier, ‘Verifying the Unverifiable: Lessons from the Biological Weapons Convention’, Pol-

itics and the Life Sciences 9, no. 1 (1990): 93–105, https://doi.org/10.1017/S073093840001025X.
95 One clear example of substitution is the U.S. renunciation of biological weapons. President Richard Nixon

is recalled to have said, ‘We’ll never use the damn germs, so what good is biological warfare as a deterrent? If
somebody uses germs on us, we’ll nuke 'em.’ See William Safire, ‘On Language; Weapons Of Mass Destruction’,
The New York Times Magazine, 19 April 1998, https://www.nytimes.com/1998/04/19/magazine/on-langu
age-weapons-of-mass-destruction.html.

96 Zaidi, Technological Internationalism and World Order.
97 However, over time we should expect that the provision of these inputs will become increasingly automated.
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Figure 1.1: Summarized inputs into AI development or deployment. Based on a figure in
Sastry et al. (2024), and modified to be inclusive of both AI development and deployment.

Of all inputs, computing hardware appears the most amenable to governance, as it enables

policies regarding regulatory visibility, allocation of resources, and enforcement.98 By com-

parison, it is comparably difficult to establish robust governance over personnel,99 data,100

or algorithms.101

The AI model lifecycle is often summarized as having three phases: training, fine-tuning, and

inference.102 Training (or “pretraining” in some contexts) is the initial creation of a model.

Fine-tuning is the more fine-grained shaping of the model’s behavior. Inference is the use

of a model to do work. As machine learning paradigms evolve, the character and relative

importance of these phases also evolve. For example, recent shifts toward “reasoning mod-

els” (or more generally, “inference scaling”) have potentially important ramifications for the

relative computational difficulty of the different phases, with inference-time compute now

potentially playing a much more important role than it did previously.103

Regulations for AI might engage with one or more phases of the model lifecycle and one or

more of the key inputs. This domain of inquiry is vast, so only a very brief summary of some

relevant parts of this topic area can be provided here. Three ways to approach AI regulation

are to stipulate rules about 1) how models are created, 2) how models behave, and 3) how

models are controlled. First, the creation and modification of models employ a wide variety

of different processes, some of which might be amenable to governance. For example, con-

98 Girish Sastry et al., ‘Computing Power and the Governance of Artificial Intelligence’ (arXiv, 13 February 2024),
http://arxiv.org/abs/2402.08797.

99 Monitoring relevant people is likely infeasible and faces significant strategic problems (see Section 2.1).
100 Controlling data is possible in theory (see Section 2.5.1), but credibly demonstrating that it has not been

copied is extremely difficult (see Section 2.5.2.4). Data governance may become more workable if computing
security improves drastically and if techniques such as federated learning—which allows models to be trained
on private data without revealing that data—become more widely known.

101 Algorithm governance would require personnel controls (see Section 2.1) and also brings its own particular
difficulties since algorithms are potentially extremely sensitive information (see Appendix E).

102 Changes in leading techniques are rapid, so this breakdown should be considered approximate rather
than definitive.

103 This summary does not capture the nuanced changes that this paradigm shift might create for AI develop-
ment and governance. For a fuller explanation, see Toby Ord, ‘Inference Scaling Reshapes AI Governance’, 12
February 2025, https://www.tobyord.com/writing/inference-scaling-reshapes-ai-governance.
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straints can be placed on the inputs used to create the model, such as dangerous kinds of data;

the size of the model, since the largest models appear to generate many of the most salient

risks; or the techniques used to train the model, since some might be regarded as very safe104

or unsafe105 (see also Section 4.5.1.2.2). Second, regulations might also apply to the behavior

of models, including their performance on capability or safety tests that are either fully au-

tomated or involving humans (see Section 4.5.1.2.3). In this report, the term “evaluation” will

generally refer to tests which can be run automatically with no human input, although the po-

tential for human involvement will also be discussed (see Section 3.5).106 Third, regulations

might relate to how the model is deployed, with major categories including regulations for

models kept within data centers (Section 4.5.2.3.1) or those that are embedded into devices

which can be moved around (see Section 4.5.2.3.6).

To outline the scope of the regulatory problem, consider a scenario where regulating AI

requires controls on all relevant hardware supply chains, data centers, and AI-providing or-

ganizations involved in development and deployment. A view this broad might indeed be

needed, since reliable hardware governance often requires being able to verify that the hard-

ware does not itself contain governance circumvention mechanisms.107 While aspects of

this description will be unrealistic, it provides a sense of how deep and multifaceted the chal-

lenges of AI verification can be. This summary should be seen as outlining the problem

space, not proposing a solution.

Supply chains could be governed and verified at key choke points such as semiconductor

fabrication to ensure that hardware matches expected designs and to ensure that required

cyber and physical security measures throughout the hardware provision ecosystem are in

place.108 Ideally, hardware would be subject to verification at all high-leverage points in the

supply chain, and the supply chain would use chain-of-custody requirements. Data centers

could be governed and verified similarly, with all equipment installed in them subject to

design review and inspection to ensure compliance with the verification scheme.109 Most

challenging of all might be the regulation of all uses of data center compute, including all

workloads that companies and individuals submit to run on data center hardware.110 Detailed

104 See for example some of the proposals for provably safe AI. David ‘davidad’ Dalrymple et al., ‘Towards
Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems’ (arXiv, 8 July 2024), https:
//doi.org/10.48550/arXiv.2405.06624; David ‘davidad’ Dalrymple, ‘Safeguarded AI: Constructing Guaran-
teed Safety’ (Advanced Research and Invention Agency, UK Government, 2024), https://www.aria.org.uk/
media/3nhijno4/aria-safeguarded-ai-programme-thesis-v1.pdf.

105 For example, long-term planning agents may be inherently unsafe. Michael K. Cohen et al., ‘Regulating
Advanced Artificial Agents’, Science, 5 April 2024, https://doi.org/10.1126/science.adl0625.

106 “Audits” are also commonly mentioned as terms of art, often employing a mix of automated and human-
centered tests.

107 For more on this, see Appendix D and Section 2.2.3.3.
108 The relevant hardware supply chains are highly international. Chris Miller, Chip War: The Fight for the

World’s Most Critical Technology (Simon and Schuster, 2022).
109 See Section 2.5.2.1 for more on this.
110 If regulation is universal, it would apply to all workloads. If regulation focuses on only AI projects involving

large amounts of compute, smaller workloads can be examined more minimally. However, distributed training
of AI models is workable, such as splitting a large project into a thousand smaller workloads, then any small
workloads submitted to a data center operator might be components of a distributed large training run. To
address this, probabilistic testing of smaller workloads, rather than universal testing, would be sufficient to catch
a major circumvention attempt.
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regulation of activities taking place on the AI chips would require methods to verify the

software, data, algorithms, and hyperparameters that are used in the creation of AI models

as well as ways to scrutinize the models themselves.111 Further challenges include the fact

that hardware stacks diverge from one another due to competition among hardware and

software providers—and the size and complexity of the ecosystem is expanding dramatically.

We are entering the range of millions to tens of millions of non-uniform AI-specialized data

center chips deployed simultaneously around the world, with rapid evolution at all levels.

Governance efforts like this are sometimes only as strong as their weakest points. Therefore,

states’ threat models should evolve as they make changes to the system. For example, if you

shore up hardware protections, those seeking to circumvent your system might focus more

on cyber attacks.112

This stylized description of a regulatory system illustrates why unilateral verification cannot

be expected to be sufficient in domains such as regulation. While unilateral verification can

certainly play a role in every agreement by providing states with information about whether

the declarations by their counterparties are true and complete,113 for at least some agreement

types it cannot provide the level of certainty required for the agreement to be considered ver-

ifiable. The crux of this issue is that computation tends to be universal and fungible,114 so un-

less a state has a reliable method for checking that the computations undertaken by another

state abide by specified rules, they cannot be certain that the computations were compliant.

Distant unilateral verification such as satellite imagery allows states to understand the rough

scale of a data center, and other information sources might provide approximate informa-

tion about the hardware within it.115 However, knowing a data center’s scale and hardware

only tells you so much, since general-purpose hardware could be used for many different

things and with many different kinds of intent.116 Some visible effects of AI development can

be perceived (e.g., products, weapons fielded) but most of the details of ongoing AI develop-

ment are invisible by default.

Intelligence capabilities might sometimes reveal details about AI development programs.117

However, this kind of transparency shouldn’t be expected to be reliable, mutual, or politi-

cally useful. Reliability is questionable because security practices change over time. Reliable

111 More on this in Section 4.5.1.2.2, and Section 4.5.1.2.3. See also Stephen Casper et al., ‘Black-Box Access Is
Insufficient for Rigorous AI Audits’ (arXiv, 25 January 2024), https://doi.org/10.48550/arXiv.2401.14446.

112 Furthermore, adding new hardware can introduce new vulnerabilities that are specific to that hardware or
to the interfaces between different kinds of hardware.

113 On this point, see Section 1.5.2.
114 Universal means that any relevant hardware may undertake a particular computation. Without extra infor-

mation, you can’t tell which piece of hardware did the computation.
115 This does provide a way to verify declarations about hardware within the data center, but not about the

specific computations undertaken by that hardware. See also Lennart Heim, ‘Limitations of Satellite Imagery
Analysis for AI-Specific Data Centers’, Lennart Heim (blog), 13 September 2024, https://blog.heim.xyz/limi
tations-of-satellite-imagery/.

116 In some scenarios, even seeing the scale and type of hardware could be informative. For example, if dis-
tributed training turns out to be infeasible (see Section 1.1.1) and a state pays a large overhead to create an enor-
mous data center. In that scenario, one can infer that there is a pressing reason why they were willing to foot
the extra cost of building such infrastructure, and the most likely reason is that they are building a model of
immense size. For clarity, this report assumes that distributed training is possible, so in the rest of this report,
no such unambiguous hardware-based signal is expected.

117 Intelligence capabilities include—but are not limited to—satellite data, human sources, and cyberattacks.
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mutual transparency—where both actors can see what the other is doing in sufficient de-

tail to consider those activities in compliance with an agreement—cannot be expected even

among the great powers with excellent cyber capabilities. Furthermore, knowledge of vio-

lations might not be politically useful, since the disclosure dilemma means that a state may

not want to reveal information from intelligence operations, lest it accidentally reveal any

of their intelligence capabilities or specific sources.118 While unilateral verification was suf-

ficient for some parts of the Cold War nuclear era,119 it does not appear to be sufficient on

its own for many of the AI agreements discussed in this report. At the same time, unilat-

eral verification via tools such as national technical means and intelligence agencies can be

expected to provide a parallel source of information that can be cross-referenced with ver-

ifiable declarations being made as part of an agreement, and therefore can help both deter

and catch attempts to circumvent the agreement (see Section 1.4). In the regulatory domains,

the relative weakness of unilateral verification means that it will primarily play a supporting

role to cooperative verification mechanisms, which will be required if robust verification is

politically necessary.120

1.6 AI verification may be workable

Despite the significant challenges of verifying regulatory agreements involving AI, there are

also reasons for optimism. This section will outline four reasons for optimism before outlin-

ing the remainder of the report. First, as noted earlier, AI-specialized computing hardware

is much more governable than it first appears. Second, the supply of AI-specialized com-

pute has multiple major choke points that are potentially high-leverage focal points for both

international agreements and verification processes. In particular, the Dutch firm ASML is

the only provider of the lithography equipment required to make cutting-edge chips, and

Taiwan-based TSMC dominates the fabrication of cutting-edge chips. Overall, the supply

network for cutting-edge hardware spans several countries, thus requiring supply chain gov-

ernance to be international from the outset. States throughout the supply chain can take

important governance action even alone, and even a small group of these states working to-

gether could powerfully shape the future of AI governance. Third, AI is drastically easier to

regulate and verify than cyber weapons, despite some apparent similarities between the two

domains. The most powerful and geopolitically disruptive forms of AI currently use enor-

118 Information from state intelligence agencies may not be something that you can reveal in detail to either the
other state or to an international organization, since the very act of revealing that information can also reveal
how you attained it. Allison Carnegie and Austin Carson, ‘The Disclosure Dilemma: Nuclear Intelligence and
International Organizations’, American Journal of Political Science 63, no. 2 (April 2019): 269–85, https://doi.
org/10.1111/ajps.12426.

119 All agreements about nuclear weapon controls up till the 1987 INF Treaty were verified unilaterally. Rose
Gottemoeller, ‘Looking Back: The Intermediate-Range Nuclear Forces Treaty’ (Arms Control Today, 2007), http
s://www.armscontrol.org/act/2007-06/looking-back-intermediate-range-nuclear-forces-treaty.

120 Regulation is discussed in detail in Section 4.5.
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mous amounts of compute and thus require highly visible infrastructure.121 While a cyber

weapon might be created on a few hundred dollars’ worth of commodity hardware in any

country in the world, AI systems of even middling significance currently require at least tens

to hundreds of millions of dollars to train. While verification measures for cyber weapons

may be nearly impossible to achieve, AI is much more amenable to verification. Fourth,

privacy-preserving verification mechanisms have been developed and appear to be appli-

cable to AI. If appropriately implemented, these mechanisms have the potential to provide

verifiability without severe transparency costs.122

The remainder of this report proceeds as follows. First, a set of potential verification compo-

nents are reviewed to provide the reader with an overall understanding of the potential and

limits of various approaches to verification (Section 2). Second, we discuss how agreements

over AI—and especially regulatory agreements over AI—will face a set of political options

and tradeoffs that pertain to verification (Section 3). Third, a set of possible international

agreements relating to AI are outlined, along with potential implementations, verification

needs, and potentially workable verification approaches (Section 4). Fourth, the report con-

cludes with a synthesis of findings and suggests some priorities for further work (Section 5).

121 Clarify that large-scale uses of compute is often discussed as a useful way to distinguish certain categories
of potentially dangerous activity from less dangerous activity. This is a widely discussed measure because it
focuses parts of the conversation on particularly dangerous activities and ensures that governance is relatively
well targeted. It is not however a complete regulatory plan on its own. Sara Hooker, ‘On the Limitations of
Compute Thresholds as a Governance Strategy’ (arXiv, 29 July 2024), https://doi.org/10.48550/arXiv.240
7.05694.

122 Some prior related works concluded that the verification of AI would be politically infeasible, but did not
examine the potential of privacy-preserving technologies for addressing that problem. For example, see Jane
Vaynman and Tristan A. Volpe, ‘Dual Use Deception: How Technology Shapes Cooperation in International
Relations’, International Organization 77, no. 3 (March 2023): 599–632, https://doi.org/10.1017/S0020818
323000140.
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2 Survey of verification components

This section surveys some key verification components which might be brought to bear on

international agreements over AI. Each of these components focuses on different objects or

processes, such as personnel, digital systems (including software and hardware), electrical in-

frastructure, socio-technical systems, and hardware enclosures. Later sections of this report

illustrate some ways in which these verification components could be employed to verify

international AI agreements.

2.1 Personnel

In personnel-centered verification, human personnel play one or more key roles as the

Prover seeks to make itself legible to the Verifier. The following subsections unpack three

very different ways in which humans can play central roles in verification: as targets of veri-

fication controls, as intermediaries for information, and as inspectors.

2.1.1 Verifiable personnel controls

Verifiable personnel controls can be used by a Prover to demonstrate to a Verifier that per-

sonnel within the Prover’s institutions are managed according to an agreement, and that no

additional personnel are present. Potential controls include verifiable processes, physical ac-

cess controls, digital controls, and legal controls. However, there are significant challenges

with robustly verifying these due to the asymmetric burden of proof for verifying negative

claims (see Section 1.5.2). A fuller exploration of this topic can be found in Appendix A.

2.1.2 Verifiable claims centered on access to personnel

Some verification approaches aim to help Provers make verifiable claims through the struc-

tured provision of access to personnel. For example, an agreement might give the Verifier the

right to interview anyone in a designated group.123 An agreement may also provide safe op-

portunities for those personnel to “blow the whistle” on non-compliant activities they know

about within their organization. While these mechanisms can be useful in low-stakes envi-

ronments, they have severe limitations in high-stakes environments, as the Prover would be

able to restrict access to personnel who have witnessed non-compliant behavior or otherwise

only employ loyal high-trust individuals. A longer exploration of these points can be found

in Appendix B.

123 For example, the International Atomic Energy Agency (IAEA) can employ interviews of declared nuclear
personnel as part of their nuclear safeguards inspections. ‘IAEA Safety Standards: Functions and Processes of
the Regulatory Body for Safety’ (International Atomic Energy Agency, 2018).
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2.1.3 Human inspectors as a verification mechanism

Inspectors have played a key role in some of history’s most challenging verification agree-

ments, such as the Intermediate-Range Nuclear Forces (INF) treaty,124 (Westport, Conn.:

Praeger, 1998). and it is reasonable to expect that they will also play a role with AI. A re-

lated role that humans can play in a verification system is that which this report terms an

assessor—a human that makes judgments about compliance based on information that they

are provided access to. This can be similar to, or overlap with, the roles of independent au-

ditors for other aspects of AI systems. The responsibilities, tools, and rights of inspectors

tend to be listed in agreement details.125 Later sections of this report explore aspects of the

inspector’s potential role. Of particular note, inspectors may play crucial roles in confirming

that buildings and hardware are compliant with an agreement both at the outset and inter-

mittently thereafter (see Section 2.5.2.1). The related role of the assessor is also explored with

regards to the potential for examining information—such as code, data, and models—within

tightly controlled facilities (see Section 3.5).

A key challenge is that when human inspectors visit sensitive sites, they can detect informa-

tion beyond that required for their verification task. Even if garnering such information is

not their goal, the danger that they would notice something security-relevant can make the

transparency-security tradeoff worse. For example, this was a key concern during Cold War

arms control negotiations.126 A related policy point is that it is advisable for states to not

co-locate sensitive assets, such as military hardware, with AI infrastructure if at all possible,

to avoid an unnecessarily bad transparency-security tradeoff with regards to AI hardware

inspections (see Appendix C.4).

However, inspectors for AI hardware should have a very promising transparency-security

tradeoff. Using only human senses it is exceedingly unlikely that highly sensitive information

would be revealed to an inspector who physically steps into a data center. What they would

be able to perceive would be only the kinds of things they would be sent to examine, such

as building layout, hardware inventory, and hardware connections. We should be optimistic

about this possibility, because inspectors were successfully employed in much more sensitive

domains, such as the INF treaty, where extensive discussions were needed to arrive at an

inspection protocol that sufficiently addressed the concerns of all sides.127 The INF treaty

124 Joseph P. Harahan, On-Site Inspections Under The INF Treaty, A History of the On-Site Inspection Agency
and Treaty Implementation, 1988-1991 (On-Site Inspection Agency, United States Department of Defense, 1993);
George Rueckert, On-Site Inspection in Theory and Practice: A Primer on Modern Arms Control Regimes

125 Consider that the verification protocol for the 1991 Strategic Arms Reduction Treaty (START) has a 500-page
verification protocol. Rose Gottemoeller, ‘Looking Back: The Intermediate-Range Nuclear Forces Treaty’ (Arms
Control Today, 2007), https://www.armscontrol.org/act/2007-06/looking-back-intermediate-range
-nuclear-forces-treaty.

126 Coe and Vaynman, ‘Why Arms Control Is so Rare’.
127 ‘Memorandum of Agreement Regarding the Implementation of the Verification Provisions of the Treaty

Between the United States of America and the Union of Soviet Socialist Republics on the Elimination of Their
Intermediate-Range and Shorter-Range Missiles’, 21 December 1989, https://nuke.fas.org/control/inf/t
ext/inf-mouanx.htm.
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case is instructive, because it illustrates that there are many ways to finely shape inspection

rules so that an agreement is both tolerable to all sides and achieves its goal.128

The key remaining problem with inspectors is their scalability. There are already millions of

AI-specialized chips in the world.129 Physically inspecting this many chips and their many

associated systems would be an enormous undertaking. Even doing this once—in detail—for

an AI-specialized data center might be a substantial task. Fully inspecting all of these chips on

a rapid cadence would be infeasible. Therefore, physical inspections make sense for three

purposes: 1) verifying that all hardware in a data center is compliant (see Section 2.5.2.1),

2) reinspections of small portions of that hardware due to Prover-initiated maintenance or

Verifier-initiated challenge inspections,130 and 3) random inspections, presuming that some

specific kinds of verification of chip activities can only be done locally.131 All three of these

activities are feasible with a reasonable number of inspectors.132

2.2 Digital systems

2.2.1 Cryptography

One reason that AI verification may be easier than historical arms control is that applied cryp-

tography has greatly advanced. This allows a host of meaningful governance functions to be

conducted in a way that does not reveal extraneous information.133 In sum, cryptography

can often allow the transparency-security tradeoff to be navigated successfully.

Moreover, cryptographic claims can be at least as reliable as physical claims in practice. For

example, essentially the entire Internet and all technical stacks depend on cryptography that

is profoundly reliable. Skepticism about the verifiability of non-material things such as dig-

ital files or computational operations is reasonable. However, we are in a world where an

extraordinary proportion of all economic and social exchanges already take place through

128 For example, nuclear weapons inspection protocols show that it is possible to vary the level of intrusiveness
greatly via various techniques such as limiting access, weighing and measuring external dimensions rather than
direct visual of the verified object, and shrouding. Corresponding technical measures for AI hardware would
need to be devised before and during negotiation of an AI agreement that involves inspection.

129 Agam Shah, ‘Nvidia Shipped 3.76 Million Data-Center GPUs in 2023, According to Study’, HPCwire, 10 June
2024, https://www.hpcwire.com/2024/06/10/nvidia-shipped-3-76-million-data-center-gpus-in-2
023-according-to-study/.

130 A challenge inspection is an inspection triggered by the Verifier requesting to see a particular site. This is a
concept from the arms control literature. It should be noted that challenge inspections can potentially be abused
if not scoped carefully, since a state might request access to a location for reasons unrelated to the agreement. Jack
Allentuck, ‘Challenge Inspections in Arms Control Treaties: Any Lessons for Strengthening NPT Verification?’
(Brookhaven National Lab., Upton, NY (United States), 1992), https://www.osti.gov/biblio/10174104.

131 A scheme of this kind was proposed in Shavit 2023. This scheme is not discussed extensively in this report
because it depends on speculative weight snapshotting hardware features that are not yet available. However,
that scheme served as the primary inspiration for much of this report, including the section on Section 2.5.3.

132 See in particular the calculations in Shavit 2023 regarding the number of inspectors needed to cover a given
set of hardware in a given amount of time, with a given chance of successfully catching a circumvention attack.

133 A useful alternative framing of the usefulness of cryptography in making different kinds of knowledge claims
is available in the ‘structured transparency’ literature. Andrew Trask et al., ‘Beyond Privacy Trade-Offs with
Structured Transparency’ (arXiv, 2020), https://doi.org/10.48550/arXiv.2012.08347.
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digital media where cryptography provides verifiable security.134 Furthermore, the crypto-

graphic concepts employed in this report are expected to be adaptable to be fully workable

in a world with quantum computers.135

2.2.1.1 Encryption

Encryption schemes allow data communicated between intended parties to be unintelligi-

ble for any entity not permitted access. Cryptography relies on digital keys, known to par-

ties intended to receive (and consume) the data, to decrypt the received encrypted data

(known as ciphertext) to generate the original and intelligible form of the data (known as

plaintext). Encryption can be symmetric—where the digital key is identical for encryption

and decryption—or asymmetric—where the digital key used for encryption is different from

that used for decryption. Crucial for this report is asymmetric encryption. Asymmetric en-

cryption, also referred to as public-key cryptography, employs techniques that allow an agent

(or machine) to publicly reveal a “public key” (encryption key) that can be used to encrypt

data in a way that only the original agent can decrypt using their “private key” (decryption

key). Exchanges of public keys enable the encryption of communications between the par-

ties.136 Note that for performance reasons, asymmetric encryption is often used to establish

a shared session key that can be used for symmetric encryption, which is often much faster

than asymmetric encryption. Such an approach eliminates the need to have a pre-shared

secret (i.e., symmetric key) between any parties that could potentially communicate.

2.2.1.2 Cryptographic signatures

A cryptographic signature allows a Prover to authenticate a particular piece of data by en-

crypting the data or its digest (i.e., hash) using a private key known only to the Prover. Ver-

ifiers can use the public key of the Prover to verify the authenticity of the received data by

decrypting the signature and relating it to the data being authenticated. Signatures discussed

later in this report will include signatures generated by machines, each of which would have

their own private key. Note that this is another use case for public key cryptography.

2.2.1.3 Cryptographic commitments

A cryptographic commitment demonstrates the existence of specific data without reveal-

ing that data. The commitment is a digital string generated using a specialized algorithm

run on the private data. Algorithms commonly employed for this purpose are one-way

134 Consider the fact that encryption schemes such as transport layer security underpin the entire internet, op-
erating so well that they are invisible to the overwhelming majority of the population. There are astronomical
returns to any attack that can break these, but they have proved robust enough to provide secure infrastructure
for the increasingly digitized global economy.

135 Note that individual cryptographic algorithms will likely need to change, and be replaced with similar algo-
rithms that are being designed in the field of post-quantum cryptography. Thankfully, this transition is occurring
more broadly in any case, and while higher computational costs of post-quantum algorithms is concerning for
this transition generally, the change is likely to have minor performance costs compared to the scale of the AI
systems in question.

136 This description is conceptual and is not intended to accurately describe all schemes of this kind. Further-
more a brief description of how quantum computers can change this picture can be found in Appendix D.
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hashing functions, which can be used to convert any data into a cryptographic string—the

“commitment”—which is extremely difficult to falsify. Furthermore, the commitment is a

relatively short string of characters, thus typically making it much smaller than the data that

it is committing to.

Commitments of this kind are very useful because they allow a Prover to provide credible

and future-verifiable information about their private data. At a later time, the Prover can re-

veal the private data associated with their commitment, thus allowing the Verifier to confirm

that the hash of the revealed data is the same as the commitment provided earlier. This is

often combined with partially revealed information, so that a Prover provides information

about many pieces of data, and the Verifier can then pick some very small fraction which

is revealed and verified. Thus, at the cost of a very small revelation of private data, a far

larger set of data can be reliably verified. Commitments are credible to the extent that the

hash function employed is difficult to spoof. To achieve extreme levels of credibility with

a cryptographic commitment, several hashing algorithms could be employed in parallel to

provide several different discrete commitments—each of which could be separately tested

against the revealed data.137

An application of cryptographic commitments discussed in this report is that of a model fin-

gerprint: a way to recognize a model once it has been created. An ideal fingerprint would

attest to the specific model without revealing any of its data. Therefore, a cryptographic

commitment—or several of them in parallel—could be employed for this purpose.138

2.2.2 AI-specialized computational hardware

General-purpose computational devices such as Central Processing Units (CPUs) are nearly

ubiquitous. However, the ongoing explosion of AI capabilities is being enabled by a slightly

more specialized kind of hardware. Originally employing Graphics Processing Units (GPUs),

the current AI paradigm has evolved toward increasingly specialized hardware that is a better

fit for the workloads that modern AI demands.139 It is primarily this specialized hardware

that is referred to as “compute” or “chips” in this report and elsewhere, since the performance

differences between the specialized hardware and more general-purpose hardware are dra-

matic. It is possible to use commodity GPUs for some AI work, but they are not as capable as

AI-specialized compute (see Section 3.2). The subsections below expand on two verification

techniques that are specific to AI-specialized compute.

137 This would be limited to only modern well-designed hashing algorithms, since some older algorithms
have security problems which make it theoretically possible for the Verifier to learn things from the
Prover’s commitments.

138 A related but very different problem is devising a model fingerprint that cannot be adversarially manipulated
to show that two models are different when they are in fact nearly identical. This would be desirable in some
governance contexts in which it is important to be able to recognize whether models are substantially different
from one another. See for example Sally Zhu et al., ‘Independence Tests for Language Models’ (arXiv, 17 February
2025), https://doi.org/10.48550/arXiv.2502.12292.

139 AI-specialized hardware can provide better computational performance for a given amount of energy.
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2.2.2.1 Chip registry

A chip registry is designed to contain unique identifiers for AI-specialized chips, along with

other data such as who currently owns them.140,141 Such a registry can facilitate knowledge

of which countries and corporations control which chips.

A chip registry requires that a robust unique identifier be available for each chip. For some

chips, a sufficiently protected hardware-level private key might be sufficient.142 Note that

there are serious ongoing questions about the security of on-chip keys of various kinds, such

as those in new NVIDIA GPUs, traditional security modules, and potentially more tamper-

resistant techniques such as physical unclonable functions.143 Chip identifiers are a funda-

mental requirement of many hardware governance schemes, since without them chips tend

to be fungible.144 If the registry is intended to employ real-time digital updates via inter-

actions with the chip over the Internet, a private key for the chip is most likely required in

order to ensure that the digital interactions cannot be easily spoofed. If a chip registry is

considered politically workable with only rare updates based on physical inspections, then

surprisingly low-tech solutions may also be workable, including the use of adhesive glitter

and photographs.145

Location information could also be included in a registry. For example, the registry might

aid hardware providers and governments in implementing country-specific regulations. A

crucial issue with potential mechanisms that provide the location of chips with high accuracy

(see Section 2.2.4.6 below) is that they can introduce severe transparency-security tradeoffs

for sensitive organizations such as militaries (see Section 1.5.1.1). Less accurate location mech-

anisms can potentially help with this.146 Furthermore, more complex schemes of hardware

governance might use a “logical” location rather than physical location as part of governance

rules, where a known institution (such as a state) takes public responsibility for a chip and

140 Yonadav Shavit describes a similar mechanism, which he terms a ‘chip owner directory’. Yonadav Shavit,
‘What Does It Take to Catch a Chinchilla? Verifying Rules on Large-Scale Neural Network Training via Compute
Monitoring’ (arXiv, 20 March 2023), https://doi.org/10.48550/arXiv.2303.11341.

141 Deric Cheng, ‘Evaluating An AI Chip Registration Policy’ (Convergence Analysis, April 2024).
142 NVIDIA H100s for example have a hardware-backed private key. Emily Apsey et al., ‘Confidential Computing

on NVIDIA H100 GPUs for Secure and Trustworthy AI’, NVIDIA Technical Blog, 3 August 2023, https://deve
loper.nvidia.com/blog/confidential-computing-on-h100-gpus-for-secure-and-trustworthy-ai/.

143 Pim Tuyls and Boris Škorić, ‘Strong Authentication with Physical Unclonable Functions’, in Security, Pri-
vacy, and Trust in Modern Data Management, ed. Milan Petković and Willem Jonker (Berlin, Heidelberg:
Springer, 2007), 133–48, https://doi.org/10.1007/978-3-540-69861-6_10; Wenjie Che, Fareena Saqib,
and Jim Plusquellic, ‘PUF-Based Authentication’, in Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, ICCAD ’15 (Austin, TX, USA: IEEE Press, 2015), 337–44; Maria Sommerhalder, ‘Hard-
ware Security Module’, in Trends in Data Protection and Encryption Technologies, ed. Valentin Mulder et al.
(Cham: Springer Nature Switzerland, 2023), 83–87, https://doi.org/10.1007/978-3-031-33386-6_16;
Aarne, Fist, and Withers, ‘Secure, Governable Chips: Using On-Chip Mechanisms to Manage National Security
Risks from AI & Advanced Computing’; Md Nazmul Islam and Sandip Kundu, ‘Enabling IC Traceability via
Blockchain Pegged to Embedded PUF’, ACM Transactions on Design Automation of Electronic Systems 24, no.
3 (31 May 2019): 1–23, https://doi.org/10.1145/3315669.

144 One existing implementation is the Device Identifier Composition Engine (DICE) standard. This scheme
depends on a Unique Device Secret (UDS) often provisioned after manufacturing as a unique value for each
physical chip.

145 This is discussed in Aarne, Fist, and Withers (2024).
146 Asher Brass and Onni Aarne, ‘Location Verification for AI Chips’ (Institute for AI Policy and Strategy, April

2024), https://www.iaps.ai/research/location-verification-for-ai-chips.
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can verify claims about that chip via various mechanisms, including challenge inspections.147

This concept is explored in Section 2.5.4.2 with respect to military chips. The general idea

could also be applied more broadly through technically simple (although politically challeng-

ing) mechanisms such as having all states take responsibility for all chips within their borders

and continuously demonstrate that fact to their peers.148

2.2.2.2 Chip supply chain verification

Chip supply chain verification requires that the supply networks for AI-specialized chips can

be verifiably monitored by the parties to the agreement. This could include tracking spe-

cialized equipment and materials for producing high-end chips, such as extreme ultraviolet

lithography machines, in order to identify all relevant chip fabrication facilities. Verification

centered on the chip supply network is important for many of the agreements described in

this report. However, it is also one of the most heavily examined adjacent areas, so in the

interests of space, this report will not deeply explore the structure of the chip supply network

and the prospects for its governance. The interested reader is encouraged to look at other

publications to understand this space.149

2.2.3 Hardware verifiability

Generally speaking, hardware can be quite verifiable because its mechanisms can be trans-

parently understood via inspection and monitoring. For this reason, the verifiability of

hardware undergirds much of the remainder of this report. However, four major chal-

lenges of hardware-based verification are worth spelling out in detail: 1) new hardware of-

ten needs to be developed to verification purposes, 2) miniaturization makes some forms

of verification more difficult, 3) advanced semiconductors are very difficult to verify, and

4) hardware that is built to be verifiable via downstream processes might incur significant

performance penalties.

2.2.3.1 New hardware is often needed for verification

While existing hardware is often relatively transparent if inspected and monitored in detail,

it is often not in a configuration that allows the Prover to protect their own security if that

hardware were subjected to close inspection by the Verifier. The INF Treaty was ultimately

successful due to the creation of a hardware verification mechanism that allowed the United

States to know that Soviet missiles exiting a particular facility were in compliance with the

147 See Section 2.1.3 for more on challenge inspections.
148 This is a form of light-touch verifiable regulation that is not discussed further in this report, and would be a

compelling possibility for future work.
149 Introductions to the topic can be found in these resources: Girish Sastry et al., ‘Computing Power and the

Governance of Artificial Intelligence’ (arXiv, 13 February 2024), http://arxiv.org/abs/2402.08797; Center for
Security and Emerging Technology, Saif Khan, and Alexander Mann, ‘AI Chips: What They Are and Why They
Matter’ (Center for Security and Emerging Technology, April 2020), https://doi.org/10.51593/20190014;
Akhil Thadani and Gregory C. Allen, ‘Mapping the Semiconductor Supply Chain: The Critical Role of the Indo-
Pacific Region’ (Center for Strategic and International Studies, 30 May 2023), https://www.csis.org/analysi
s/mapping-semiconductor-supply-chain-critical-role-indo-pacific-region; Chris Miller, Chip War:
The Fight for the World’s Most Critical Technology (Simon and Schuster, 2022).
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treaty.150 The development of these verification mechanisms started years before the treaty

was signed. In part, this was due to the need to find security-preserving verification mecha-

nisms and implement them in hardware.

For digital hardware, the story may be similar. The following sections discuss several kinds

of hardware-enabled mechanisms which fall along a broad spectrum, from mature, widely

implemented technologies to speculative technologies lacking even a prototype. While this

report emphasizes relatively mature technological capabilities, it is certainly not guaranteed

that an international agreement will be able to be verified using off-the-shelf hardware for

its crucial components. Components that play a central role in the verification process may

need to be designed and built for that specific purpose. Moreover, to guard against the inser-

tion of verification circumventions or other vulnerabilities, the new hardware may have to

be collaboratively designed and built—a much more involved process. This latter point will

be discussed again below with regard to “leading node” semiconductors (see Section 2.2.3.3).

2.2.3.2 Miniaturization can make verification more difficult

The ongoing miniaturization of digital hardware can make verification more difficult because

it makes it harder to verify negative claims about digital computations or transmissions—

smaller objects are easier to hide. As noted in Section 1.5.2, verifying a claim of the form

“no X is occurring” often requires an exhaustive search for ways that X could be occurring.

One example that will be discussed later is that of a Prover attempting to demonstrate that

a data center only has specific kinds of monitored connections with the outside world (see

Section 2.5.2.4). To make such a claim in today’s world, the Prover would not only need

to demonstrate that the major network connections (such as internet backbone cables) are

adequately monitored, they would also need to demonstrate that no other hardware within

the data center was capable of transmitting signals of any kind out of the facility. To make

this claim robust, the Prover would have to adequately convince the Verifier that all hardware

was compliant and that there was no feasible way for additional hardware to be inserted

without the Verifier noticing. This problem is exacerbated by the miniaturization of both

telecommunications hardware itself as well as devices through which it could be infiltrated

into facilities, such as small drones.

2.2.3.3 Advanced semiconductors are difficult to verify unless

cooperatively built

Verification of advanced semiconductors faces two major problems. First, leading semicon-

ductor design and fabrication processes involve highly sensitive corporate and state secrets

that will be guarded carefully. Second, downstream verification of a completed semiconduc-

tor does not appear to be technically feasible for semiconductors beyond a given level of

miniaturization and complexity.

150 Toivanen, ‘The Significance of Strategic Foresight in Verification Technologies’.
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Conducting mutual verification of the creation of advanced semiconductors may not be po-

litically feasible. The leading foundries (such as TSMC) and the leading chip designers (such

as NVIDIA) retain their lead over their competitors in part due to trade secrets which could

be revealed if mutual verification of chip production were undertaken, and the threat of

this revelation would be considered a major economic and even military security risk by

the home states of those corporations. Unless we can develop a method for mutual verifi-

cation of leading-node semiconductor production that does not reveal these secrets, such

proposals can expect intense pushback from the firms and states involved. However, if a

security-preserving mutual verification protocol could be developed for leading node semi-

conductor design and fabrication, such a protocol could enable highly efficient verification

mechanisms to be installed in maximally performant hardware, thus addressing the concern

outlined below that verifiable hardware may be less performant.

Given access to a leading node semiconductor, even a state with extensive resources is likely

to have no way of non-destructively proving that the chip is compliant. No non-destructive

technique is known for imaging such a chip’s tens of billions of transistors spread across

dozens of layers—and destructive techniques cannot be applied to chips that a state would

like to use.151 If you destroy chips in the process of learning about them, you are unable to

use the chips you learn about. Furthermore, there is no known way to prove that two chips

are identical, so even if a state tests dozens of chips, there is no guarantee that hardware

circumventions or backdoors have not been installed in other chips.152 These problems only

apply to semiconductors above a certain level of complexity, since it is possible to reliably

image single-layer semiconductors built at much larger node sizes.153 A useful area for future

work would be to examine the practical limits of downstream semiconductor verification.

2.2.3.4 Downstream-verifiable semiconductors might be less

performant

Semiconductors which can be directly inspected for compliance may be less performant

than their unverifiable kin. As discussed above, semiconductors that can be directly veri-

fied may need to be built with drastically less complexity and fewer layers than present-day

leading node semiconductors. Each new semiconductor fabrication node has made semi-

conductors more complex but yielded substantial performance benefits over prior nodes, so

it stands to reason that this complexity limit on downstream verifiability means that verifi-

151 One destructive technique is to use scanning microscopes to image an entire layer, then remove that entire
layer, and repeat. The resulting map could in theory allow the chip’s entire design to be inspected, although the
feasibility of these steps is unclear.

152 Depending on the threat model, this may or may not be an important point. Random inspection might place
significant constraints on the potential for hardware circumvention in scenarios where a broad array of hardware
needs to be physically modified for a circumvention to be successful (see Shavit 2023). However, if the threat
model indicates that even a single piece of modified hardware could allow circumvention for the larger system,
then it is infeasible to guard against such a danger with downstream inspections. An example of a threat model
like this would be something that allows a third party to use a single piece of hardware to get inside of a trust
boundary (e.g., a pod of AI chips) and thus access large amounts of sensitive plaintext data.

153 Ken Shirriff, ‘Standard Cells: Looking at Individual Gates in the Pentium Processor’, July 2024, http://www.
righto.com/2024/07/pentium-standard-cells.html.
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able semiconductors will be less performant than their leading node kin. This performance

penalty is likely to be the most acute in those domains where the greatest performance im-

provements have been made in recent years, such as AI-specialized compute chips and their

network interconnect hardware. Proposals for using semiconductors as key parts of a verifi-

cation mechanism must therefore either address the challenge of cooperative production or

find a way to avoid requiring leading node semiconductors within the trust boundary of the

verification system.154

2.2.4 Hardware-enabled mechanisms

2.2.4.1 Anti-tamper mechanisms

Hardware can be produced, packaged, and monitored in ways that makes tampering with

it either difficult (i.e., “tamper-resistant”) or infeasible to hide (i.e., “tamper-evident”).155

Tamper resistance increases the complexity, cost, and time of efforts to modify hard-

ware. Tamper evidence makes it possible for the Verifier to catch the Prover’s efforts to

modify hardware.

While simple in theory, tamper resistance and tamper evidence are very difficult to achieve if

you assume that a state actor will be able and willing to spend significant time and resources

attempting to break your tamper resistance mechanisms. A broad exploration of tamper

resistance mechanisms is outside the scope of this report.156 Two categories of anti-tamper

mechanisms will be discussed further in this report:

1. Hardware packaging such as enclosures can employ anti-tamper mechanisms such as

physical unclonable functions (see Section 2.5).

2. Hardware installations can be inspected and then monitored using video cameras and

electromagnetic or acoustic sensors. However, these data streams can bring their own

potential vulnerabilities, so they need to be considered carefully (see Section 2.5.2.2).

2.2.4.2 Remote attestation

Hardware mechanisms and cryptographic techniques can be employed to prove that the

code running on a system—including both firmware and software—has not been tampered

154 For example, the flexHEG report describes a way to move the AI chip outside of the trust boundary, thus
enabling the verification of hardware which was built for cutting-edge performance. Petrie et al., ‘ Interim Report: 
 Mechanisms for Flexible  Hardware-Enabled Guarantees ’.

155 “Tamper proof” is a related term that refers to theoretical hardware that cannot be modified in a non-
destructive way. See also Aarne, Fist, and Withers, ‘Secure, Governable Chips: Using On-Chip Mecha-
nisms to Manage National Security Risks from AI & Advanced Computing’; Kulp et al., ‘Hardware-Enabled
Governance Mechanisms’.

156 For insightful introductions to these challenges and how they relate to AI-specialized chips in particular, see
Aarne et al. (2024) and Kulp et al. (2024).

48



with.157 The “remote” in remote attestation means that this process can in fact be conducted

remotely, without the Verifiers even knowing where the system is located. The crux of this

mechanism is the hardware root of trust—a private key—embedded in the chip or system of

interest. Presuming that the hardware root of trust has not been violated, remote attestation

is poised to provide robust results.158 Remote attestation undergirds many of the hardware-

enabled techniques discussed later in this report, and thus they share its dependence on

hardware integrity.

2.2.4.3 Liveness pings

To demonstrate that a particular piece of hardware is operating with its original root of trust

unchanged, the Prover can arrange to have that hardware respond to cryptographic pings

that are sent by the Verifier. In so doing, the Prover can substantially limit their own ability to

manipulate the hardware they are using for verification. For example, if all key parts of their

hardware are responding to cryptographic pings every few seconds, they will be limited in

their ability to modify any of that hardware without being noticed. This mechanism requires

that the roots of trust for the hardware devices being pinged have not been copied by the

Prover. This requirement could potentially be supported by mutual verification of the supply

chain (see Section 2.2.3.4) and installation in the presence of inspectors.

2.2.4.4 Confidential computing

Confidential computing is a hardware-enabled computational approach that provides credi-

ble assurances to the remote user that no one else can see their code, data, or results, includ-

ing the hardware operator.159 It is premised on remote attestation, as described above, and

thus depends on a secure hardware root of trust (see Section 2.2.4.2). This technology is al-

ready available for new generations of leading AI hardware, including NVIDIA’s Hopper and

Blackwell microarchitectures.160 Note that while existing chips can accomplish confidential

computing, upcoming generations such as NVIDIA’s upcoming Blackwell chips are adver-

tised as being able to do confidential computing in large clusters of GPUs with performance

similar to unencrypted computing.161

157 Onni Aarne, Tim Fist, and Caleb Withers, ‘Secure, Governable Chips: Using On-Chip Mechanisms to Manage
National Security Risks from AI & Advanced Computing’ (Center for a New American Security, 2024); Gabriel
Kulp et al., ‘Hardware-Enabled Governance Mechanisms: Developing Technical Solutions to Exempt Items Oth-
erwise Classified Under Export Control Classification Numbers 3A090 and 4A090’ (RAND Corporation, 18 Jan-
uary 2024), https://www.rand.org/pubs/working_papers/WRA3056-1.html.

158 See also Appendix D.
159 The term “confidential computing” is used in this report to refer to not only the existing confidential com-

puting standard, but also the entire family of technologies that can similarly enable credible multi-agent remote
attestation. A full exploration of this family of technologies and techniques is beyond the scope of this report.

160 Emily Apsey et al., ‘Confidential Computing on NVIDIA H100 GPUs for Secure and Trustworthy AI’, NVIDIA
Technical Blog, 3 August 2023, https://developer.nvidia.com/blog/confidential-computing-on-h10
0-gpus-for-secure-and-trustworthy-ai/; ‘NVIDIA Blackwell Architecture’, NVIDIA, accessed 13 March
2025, https://www.nvidia.com/en-us/data-center/technologies/blackwell-architecture/.

161 The details of computational cost for confidential computing on different GPU generations is important, but
will not be explored in great depth in this report. This is an area where further work would be very valuable.
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Confidential computing enables a number of very useful computational abilities, only a few

of which will be mentioned here. First, it allows the Prover and Verifier to both be shown

code that is submitted to be run within the secure environment—thus allowing mutual code

review. Second, it allows each actor to hide sensitive parts of its code and data (such as al-

gorithms, see Appendix E) which it does not want to show to the other party while also en-

abling tests or evaluations to be run against that hidden code and data. Third, falsifications

of any component of the system are difficult, since cryptographic commitments are used

to demonstrate that the components are unchanged from their attested state—thus allowing

each side to know that their code is running against the right objects even if they cannot see

the plaintext versions of those objects. Overall, this kind of cryptographically-attested code

and data approach therefore allows Provers and Verifiers to work together to enable security-

preserving evaluation of any digital object.162 More exploration of this concept can be found

in Section 3.5.

This standard already exists, as do stacks that implement it. However, it is certainly not

guaranteed that this approach will be robust enough for the political needs of agreements

between states. It is certainly possible that the confidential computing stack has flaws that a

cyber-competent state would be able to find and exploit to either exfiltrate data that should be

hidden or damage the integrity of the verification processes. More work is needed to exam-

ine the capability and limits of confidential computing as well as to propose complementary

hardware monitoring techniques that would make hardware-centered attacks much more

difficult (see Section 2.5.2).163,164

2.2.4.5 Licensing

Hardware licensing schemes typically require that hardware only operates to its full potential

if it is provided with an appropriate (encrypted and signed) license.165 An appropriate license

allows the hardware to operate at full capacity for some amount of time. Such schemes have

precedent in the computing world, including in some processors provided by Intel.166

162 For a practical example of the application of this technology to a cooperative verification problem in AI, see
‘Secure Enclaves for AI Evaluation’ (OpenMined, 12 December 2024), https://openmined.org/blog/secur
e-enclaves-for-ai-evaluation/.

163 Note in particular that the implementation on NVIDIA’s Hopper chips is not intended to be robust against
sophisticated physical attacks. Rob Nertney, ‘Confidential Compute on NVIDIA Hopper H100’ (NVIDIA, 25 July
2023), https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf.

164 The limited ability of the underlying hardware (trusted execution environments and security modules) to
defend against sophisticated attacks is also a key theme in Aidan O’Gara et al., ‘Hardware-Enabled Mechanisms
for Verifying Responsible AI Development’ (arXiv, 2 April 2025), https://doi.org/10.48550/arXiv.2505.03
742.

165 See Kulp et al., ‘Hardware-Enabled Governance Mechanisms’; Aarne, Fist, and Withers, ‘Secure, Governable
Chips: Using On-Chip Mechanisms to Manage National Security Risks from AI & Advanced Computing’.

166 ‘Intel On Demand’, Intel, accessed 13 March 2025, https://www.intel.com/content/www/us/en/produc
ts/docs/ondemand/overview.html.
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In some verification approaches, licensing is an enforcement mechanism which makes some

kinds of verification easier.167 However, there is no requirement that the license-providing

system be controlled by the Verifier. It can just as easily be controlled by the Prover in a way

that is transparent to the Verifier, thus allowing similar verification processes to happen with

somewhat different political implications (see Section 3.6).

Note that this scheme could be applied to chips via on-chip mechanisms or to larger enclo-

sures of hardware such as pods (see Section 2.5.4.1). Depending on the model being built

or operated, either approach could be reasonable. Generally, however, the most important

models which require governance will be models that require more than one chip for train-

ing or inference, thus making pods the more appropriate enclosure size for this mechanism.

Two kinds of licensing systems have been discussed in the literature: offline and online. Of-

fline licenses do not presume that a (reliable) digital connection is established between the

licensed hardware and the license-providing institution.168 Schemes like this allow chips to

be kept fully “offline”, in locations such as secure air-gapped facilities. By contrast, online li-

censes require a reliable digital connection between the hardware and the license-providing

institution, thus allowing license requests and renewals to be exchanged much more quickly

and often.

License renewals could be tied to a cryptographic exchange with the licensed hardware that

requires a cryptographic challenge, such as a string that must be encrypted by the licensed

hardware using its private key and returned to the license-providing institution. This would

make it infeasible for license renewals to be requested early—a concern if license stockpiling

would enable non-compliant use of the hardware. Furthermore, a late request for a license

renewal could immediately trigger a request for physical inspection or other kinds of closer

monitoring, since a late request could be an indication that the hardware was being tampered

with or had been used in a way that violated the agreement. Similarly to the discussion

above on liveness pings (Section 2.2.4.3), if license renewals happen on a quick cadence, they

might make hardware tampering exceedingly difficult. An important caveat for both rapid

licensing and liveness pings is that AI chips often have maintenance issues or die entirely, so

loss of connection to a chip is certainly not reliable evidence of tampering—other systems

of information must be layered with these mechanisms if they are to serve their purpose.169

167 More complicated licensing mechanisms could also allow for the license itself to indicate how well the hard-
ware should perform. While very hypothetical, such mechanisms could allow for fine-grained and rapid tit-for-
tat between veto holders, since they could set each other’s maximum hardware percentage at any level, thus
allowing small increments or decrements as required by the political bargaining process. As with all agreements
discussed in this report, the danger of a full exit from the agreement is assumed to always be in the background
of any negotiations. Section 1.4 says more about the maintenance of political equilibria.

168 Kulp et al., ‘Hardware-Enabled Governance Mechanisms’; James Petrie, ‘Near-Term Enforcement of AI Chip
Export Controls Using A Firmware-Based Design for Offline Licensing’ (arXiv, 28 May 2024), https://doi.or
g/10.48550/arXiv.2404.18308.

169 As noted later, parallel streams of data could cover different crucial systems, such as networking and electric
power. (See Section 2.5.2.2.)
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2.2.4.6 Location verification

Hardware-enabled mechanisms can allow objects to be located with a configurable degree of

accuracy, thus allowing governance processes to happen conditional on location. One exam-

ple explored previously is an on-chip location verification mechanism, which is embedded

in a chip and which allows the chip to rapidly respond to an encrypted digital challenge sent

by the Verifier. Due to the fundamental limitation of the speed of light, the (very short) time

required for the full exchange of the digital challenge allows the location of the chip to be

approximated since it is known that the signal must travel slower than the speed of light.170

More generally, location verification mechanisms can be added to any piece of hardware,

not just chips.171

2.2.4.7 Enforced encryption of outbound data

Hardware-backed mechanisms can allow the Prover and Verifier to know with confidence

that certain kinds of outbound data (e.g., model weights) are encrypted according to specific

keys—thus protecting those resources from direct extraction. Since encrypted data cannot be

read by anyone unless they hold the decryption key, such a mechanism can provide a cryp-

tographic barrier that changes the shape of the governance and enforcement problems.172

Later sections of this report explore how enforced encryption can enable key verification

functionalities or make them more tractable (see for example Section 2.5.2.4).

A scheme of this kind requires at least two ingredients: one or more verifiable keys that

will be used for encryption and a way to recognize the relevant outbound data operations.

Keys could be provided by different parties depending on the governance goals, or by multi-

ple parties to enable robust cooperative verification as explored below (see Section 2.2.4.7.1).

Hardware-enabled mechanisms would need to provide a way for the various parties to con-

firm that the correct encryption keys will indeed be used.173 Relevant outbound data op-

erations also need to be identified correctly, since some outbound operations should cer-

tainly not be encrypted in this scheme (e.g., inference responses). Complicating matters is

the fact that training and inference for large AI models require many chips—and perhaps

even many pods of chips—to work together. Most AI-specialized hardware does not support

170 Aarne, Fist, and Withers, ‘Secure, Governable Chips: Using On-Chip Mechanisms to Manage National Se-
curity Risks from AI & Advanced Computing’; Asher Brass and Onni Aarne, ‘Location Verification for AI Chips’
(Institute for AI Policy and Strategy, April 2024), https://www.iaps.ai/research/location-verificatio
n-for-ai-chips.

171 At least limited access to the Internet is required, since the cryptographic challenge and its response is pre-
sumed to be over digital networks. Using standard hardware and software techniques, such access can be re-
stricted to precisely match the requirements of the location verification, and thus this access would not be ex-
pected to provide any new opportunities for digital connections or attacks.

172 An analogy to verified encryption would be that costly processes—such as having armed men travel between
sites carrying a briefcase full of sensitive data—can be replaced with cheap and scalable cryptographic processes
that accomplish the same governance goal.

173 In parallel, additional hardware-enabled mechanisms might be put in place to prove that data was encrypted
using a specific key. This hypothetical parallel approach could be an interesting area for further work.
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encryption over the highest-bandwidth interfaces, although this is changing with NVIDIA’s

upcoming releases.174

At least one existing method can implement enforced encryption of selected outbound

data, and one proposed method is promising. Existing confidential computing techniques

(see Section 2.2.4.4) could allow the Prover and Verifier to mutually verify that the code op-

erating on the hardware enforces encryption using the appropriate keys on the appropri-

ate operations. A more speculative method is that of Flexible Hardware-Enabled Guaran-

tee (flexHEG) systems, which would embed rules into hardware and into code that would

run on a secure processor adjacent to the AI-specialized hardware.175 In either case, op-

erations involving larger models would likely require (for efficiency purposes) that this

mechanism be implemented at the level of the pod rather than merely at the level of the

chip (see Section 2.5.4.1).

Selective encryption of outbound data has three main challenges. First, this mechanism

is only as robust as the technical mechanisms it depends on—such as confidential comput-

ing and flexHEG discussed above.176 Second, encryption adds some overhead to data trans-

fer operations, and in certain circumstances this overhead might be substantial. Third, this

mechanism cannot protect data from side or covert channel attacks that exfiltrate the data

in unexpected ways, such as model extraction attacks via inference calls.177

2.2.4.7.1 Doubly-encrypted outbound data

In a special variant of the above mechanism, selected data could be verifiably locked by both

the Verifier and the Prover until after verification processes have completed. The encryption

of outbound data would be enforced with two or more keys, with at least one coming from the

Verifier and one from the Prover. Since each party knows that the data was encrypted using

a key that they provided, they gain some assurance that no one (including the other party)

can access the plaintext. Such a scheme would allow politically useful information protocols:

for example, it can ensure that data cannot be examined by any party until it arrives in a

neutral verification data center (see Section 3.6.1). Following privacy-preserving verification

processes in that data center, the Verifier could provide the Prover with the decryption key

for that data, thus enabling the Prover to decrypt their own copy—while still ensuring that

the Verifier never gains full access to the plaintext data.178 In sum, this mechanism would

allow the Prover to demonstrably submit their digital objects to governance and verification

in a way that prevents the Prover from copying or using those digital objects until after the

governance processes have completed.

174 ‘NVIDIA Blackwell Architecture’, NVIDIA, accessed 13 March 2025, https://www.nvidia.com/en-us/data
-center/technologies/blackwell-architecture/.

175 James Petrie et al., ‘Interim Report: Mechanisms for Flexible Hardware-Enabled Guarantees’, 23 August 2024.
176 Off-chip encryption hardware might be able to solve this problem, but it is unclear how relevant data would

be identified. Perhaps all outbound data could be encrypted, thus raising the credibility of this mechanism, but
potentially raising its efficiency costs substantially in some domains.

177 Jiacheng Liang et al., ‘Model Extraction Attacks Revisited’ (arXiv, 8 December 2023), https://doi.org/10
.48550/arXiv.2312.05386.

178 To ensure that the data can never be decrypted again in the wild, the Prover can also destroy all copies of
their private key once they have secured access to their data.
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This scheme may be politically valuable. First, it demonstrates that even the Prover cannot

access their data without the compliance of the Verifier. This places the verification pro-

cess within the AI development process and thus helps clarify the Prover’s seriousness about

demonstrating their compliance. Second, the Verifier could delay revelation of the decryp-

tion key following verification processes, for example if there were inconsistencies in the

results. This places some pressure on the Prover to continue to engage seriously with the

Verifier about resolving the information problems, since they would normally like to gain

access to the data that they have paid to create, such as a finished model (see Section 3.5 for

more about how repeated and escalating efforts can be made to resolve verification issues). If

this process were taking place with a very large model, the costs in hardware time and money

that are embodied in the model would be substantial, thus incentivizing the Prover to move

effectively to demonstrate that the model is compliant so that they can quickly gain access

to their valuable model.179

2.2.4.8 Networking hardware

Networking hardware enables machines to communicate with one another. Verification

of networking hardware can enable the Prover to demonstrate how information can flow

throughout their infrastructure. Furthermore, if networking hardware can be reworked to

enable a combination of data retention (for the Prover) and cryptographic commitments (for

the Verifier), it can allow for the verification of all data that passes through it. This concept is

expanded in Section 2.5.2.3.

2.2.5 AI-enabled devices

An AI-enabled device is a physical device that has an AI model embedded into it. In most

of the discussion that follows, these devices will be presumed to be mobile (i.e., not limited

to data center locations). Furthermore, later sections that discuss their governance will as-

sume that these devices are operating with highly sensitive technologies and in sensitive en-

vironments, with autonomous weapons being the archetypal example (see Section 4.5.2.3.6).

All of these assumptions are intended to bias the discussion in the direction of taking seri-

ously the most challenging verification problems for devices of this kind. As with other such

conservative assumptions in this report, we hope that if we consider maximally challeng-

ing verification problems seriously, this will yield insights that can be readily applied to less

challenging domains.

2.3 Electrical infrastructure

Building or running AI requires computational hardware, which in turn requires electric

power. Prior work has emphasized that even very coarse-grained information about electric

179 In the worst case, such an interaction could lead to the end of the agreement between the Verifier and Prover.
In this case, the Prover would presumably never gain access to the resource at the center of the disagreement.
They would have to recreate it again if they wanted it.
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power usage could be useful for verification of international AI agreements.180 While macro-

scopic power signatures reveal very little about the computations that are being undertaken,

they can certainly help reveal undisclosed data centers.181 That is, if an international agree-

ment over AI requires states to disclose via declarations the locations of some or all of their

data centers, information about the state’s electrical power infrastructure could be used to

check for omissions in those declarations (see Section 1.5.2). Since electrical power infrastruc-

ture is itself strategically valuable, revealing detailed information about its structure would

be subject to the transparency-security tradeoff. Addressing these concerns is theoretically

possible through the inventive use of a stack similar to that summarized in Section 3.5, where

sensitive information from both the Prover (declarations about electric grid structure) and

Verifier (estimates of electric grid structure from unilateral monitoring) can be combined

securely to test verification-related claims. A major challenge with this sort of information

exchange is that the Verifier could potentially garner more information than intended from

the verification-related claims, if they structure the data they provide such that the responses

from the verification process reveal important security-relevant information that the Prover

wants to keep hidden.182 Similarly, it is plausible that the Prover could learn things about

what the Verifier believes to be true and thus discover important security-relevant details

about the Verifier’s ability to unilaterally garner information. In sum, this technique appears

to have significant potential, but it may also have significant remaining challenges that de-

serve further study.

2.4 Socio-technical systems

Verification schemes are inevitably embedded in larger socio-technical systems. This means

that verification needs both to be robust to changes in the broader systems, and to serve a

role in ensuring that the guarantees apply despite the surrounding socio-technical architec-

ture. A verification regime that relies on operators needs to be robust not just to technical

circumvention, but to operators intentionally changing the systems. For this reason, even

narrow technical schemes need to engage with socio-technical infrastructure.

2.4.1 Institutional digital infrastructure

Verification schemes may relate to or include broader digital infrastructure (beyond data cen-

ters) such as telecommunications systems and information technology equipment (including

personal computing equipment used by key personnel). Institutional digital infrastructure

could include privileged internal information systems such as internal communication, in-

180 Akash R. Wasil et al., ‘Verification Methods for International AI Agreements’, arXiv.org, 28 August 2024, http
s://arxiv.org/abs/2408.16074v1.

181 Even with fine-grained power usage data drawn from the equipment within a data center, it is not yet possible
to reliably know what kinds of workloads are being run—even in the absence of Prover efforts to obfuscate their
actions. For more on the state of the art of workload classification, see Lennart Heim et al., ‘Governing Through
The Cloud: The Intermediary Role Of Compute Providers In AI Regulation’ (Oxford Martin AI Governance
Initiative, March 2024).

182 For example, a poorly designed exchange could reveal substantial information about the declared structure
of the power grid to the Verifier (such as the locations of all major power loads).
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cident reporting, and potentially other aspects of a regulatory apparatus. Verification might

engage with this infrastructure in two major ways: 1) by demonstrating that controls on the

infrastructure are credible and 2) by demonstrating other claims via information that the

infrastructure can provide. Each will be explored in turn.

2.4.1.1 Verifiable digital infrastructure controls

In some cases, the Prover would like to demonstrate that their institutional digital infrastruc-

ture abides by specific controls. This is somewhat easier than the similar personnel-based

approach (see Section 2.1.1) because the function and rules of each component of digital in-

frastructure can in theory be made clear to the Verifier, and adherence with the rules can be

double-checked. For example, a Prover can declare that one of their general-purpose com-

putational systems will only ever act in a strict and particular pattern (e.g., sending messages

at certain intervals, encrypted with a specific key, with specific kinds of content). A Verifier

can install relatively simple hardware systems to monitor the general-purpose system to en-

sure that it adheres to these limitations. Importantly, the Verifier-installed systems can be

mutually verifiable, thus reassuring the Prover about their capabilities (see Section 2.5.2).

The central challenge of verifiable digital infrastructure controls is proving that the infras-

tructure under examination is the only infrastructure that matters for a particular gover-

nance issue. For example, even if the Prover shows the Verifier a regulatory information

system, there is no guarantee that the Prover is not maintaining a secret parallel system that

contains key information relating to the governance question. This is a variant of the asym-

metric burden of proof for verifying negative claims (see Section 1.5.2). To demonstrate that

the digital infrastructure being shown to the Verifier is the only relevant infrastructure, the

Prover might have to find innovative ways to demonstrate that no secret parallel infrastruc-

ture could exist.183

2.4.1.2 Verifiable claims centered on access to digital infrastructure

Similarly, the Prover might provide structured access to their digital infrastructure in order

to demonstrate other claims to the Verifier, such as claims about activities that are monitored

by that infrastructure. In theory, the Prover can provide some kind of access to key digi-

tal infrastructure so that the Verifier (or the Verifier’s privacy-preserving code, as discussed

in Section 3.5) can check whether specific claims are true. As noted above, the digital infras-

tructure would need to be verified throughout to ensure that the Prover does not retain other

ways of manipulating its content or filtering information that it receives. Unless compliance

is checked in a privacy-preserving way, this approach would face significant political chal-

lenges, since it would potentially reveal information that is sensitive and not directly related

to the verification of the sender’s behavior.

183 Exploration of this question goes beyond the scope of this report. It should be noted however that data
infrastructures are physical, thus allowing the Prover to demonstrate that key buildings or computing systems
have no other way to communicate than what is shown to the Verifier. A related concept for data centers is
discussed in Section 2.5.2.1.
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2.5 Enclosures and security boundaries for AI hardware

Much of the discussion about AI verification so far has centered on making chips hard to

tamper with and installing governance mechanisms on them.184 This report takes a broader

stance for the reasons outlined in Section 3.4. In this report, enclosures and security bound-

aries are not assumed to be only around the AI-specialized chips. Overall, this report empha-

sizes the potential for off-chip mechanisms to help accomplish governance goals, including

in synergy with on-chip mechanisms such as confidential computing.185

Enclosures can help:

• Partition hardware into separate units (or assemblages), each of which can make verifi-

able claims as they perform their functions. The act of partitioning hardware provides

opportunities for both governing its interactions with other hardware and verifying that

governance. Verification hardware may not need to be embedded within the hardware

units themselves. Instead, verification hardware could be placed in between the differ-

ent units.186

• Make it possible to make verifiable claims even if untrusted hardware (e.g., a CPU or a

prior generation GPU) is doing the heavy lifting. The flexHEG report specifically talks

about moving the trust boundary to allow for the verification of activities undertaken

on GPUs that lack on-chip verification mechanisms.187 This is an important insight,

because it allows verification mechanisms to work on 1) legacy hardware and 2) chips

that are too complicated to be inspected downstream (see Section 2.2.3.3).

• Provide verifiable hardware packages that match the scale and character of the computa-

tional operations that are needed. Some models are small enough to fit on a single chip

(e.g., for running inference), while others are best run on a large pod of many hundreds

of GPUs.

• Mitigate threats of tampering and circumvention at the level of a complete system, not

just a single chip—see Section 2.2.4.1.

• Focus verification processes on relatively simple hardware that can be mutually trusted.

• Allow a Prover to make overlapping claims (e.g., about the behavior of chips, pods, mod-

ules, and entire data centers)—thus making it much harder for them to circumvent ver-

ification mechanisms.

To accomplish these things, enclosures need to be secure and mutually verified. Each of these

concepts is expanded in the subsections below. There are also political questions about the

184 Aarne et al. (2024); Kulp et al. (2024).
185 Prior work has described one example of such an enclosure, the FlexHEG. This section expands on some

of the concepts from that proposal and shows how these ideas can open up both technical and political options.
Petrie et al. (2024).

186 This description presumes that hardware on such boundaries would have access to the information needed
for governance and verification. As will be discussed below, this assumption might require that cryptographic
schemes be chosen which allow credible commitments to be made about even encrypted data. see Section 2.5.3.

187 Petrie et al., ‘ Interim Report:  Mechanisms for Flexible  Hardware-Enabled Guarantees ’.
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location and physical control of these enclosures which are examined in Section 3.6. This

section will first unpack the concepts of security and mutual verification before going on

to describe verifiable claims that can be made, as well as different sizes of enclosures that

might be very useful for AI governance and verification purposes: pods, containerized data

centers, and traditional data centers.188 Future work will be required to understand how we

might scale up this approach to address political needs.

2.5.1 Security

If hardware or software is to be trusted for sensitive operations, it must be trustworthy. The

domains of physical and cybersecurity research and practice are enormous and cannot be ad-

equately summarized here. Institutions intending to use hardware to make verifiable claims

must urgently prioritize security. A report by Nevo et al. (2024) lays out many important

aspects of the problem.189 Of particular note are their findings that a) the problem space is

extremely complex and multifaceted, and b) few, if any, institutions are realistically able to

defend against sustained attacks from the most capable institutions in the world.190

The need to make computational infrastructure verifiable as well as secure unfortunately in-

troduces new challenges. In order to achieve high credibility, the information flows that sup-

port verification of compliance must be relatively continuous—therefore opening up further

avenues for attack. While a full discussion of the overlapping and diverging needs of security

and verification is beyond the scope of this report, two concepts are worth noting. First, while

verification creates new pathways for attack, it also helps bring attention and resources to the

problem of robustly securing infrastructure. For example, as explored in Section 2.5.2.2, any

data pathway that could plausibly be used for an attack is another candidate domain for addi-

tional verification mechanisms. The extraordinary attention and diligence that such mecha-

nisms involve might in fact improve security beyond what it might have been in an unverified

equilibrium. Second, particular aspects of the technical and software stack for verification

must be developed either collaboratively or openly. Collaboration could mean that techni-

cal teams from rival states would work together to create and test mechanisms, as American

and Soviet teams did for nuclear verification during the Cold War. Open development could

be fully public, involving open-source scrutiny from not only the primary states involved in

the agreement but also third party states, corporations, and civil society. While the states

that are most important to future agreements over AI (such as the United States and China)

have enormous technical capabilities, it is still possible that they will miss something if they

develop these mechanisms alone or even in concert with each other. Open development

could allow for a level of adversarial testing that even the great powers would have difficulty

matching. A particularly compelling form of incentive is also possible for open standards:

188 These subsections generally refer to “data centers” for enclosures in general, since most of these concepts
have been most thoroughly examined with regards to data centers. However, all of the concepts can apply to
enclosures of any scale.

189 Sella Nevo et al., ‘Securing AI Model Weights: Preventing Theft and Misuse of Frontier Models’ (RAND
Corporation, 30 May 2024), https://www.rand.org/pubs/research_reports/RRA2849-1.html.

190 Scher and Theirgart (2024) also note that data center security is a crucial area of work.
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bug bounties. If substantial monetary prizes are offered to anyone who can find important

flaws in the proposed mechanisms, very intense scrutiny can be expected.191

Other aspects of security are overtly political. As noted later, enforcement patterns can shape

verification (see Section 3.1.1). These choices can also shape some aspects of security. For ex-

ample, if it is politically intolerable that stolen hardware still functions, secure facilities such

as data centers might install various mechanisms to ensure that hardware that is physically

seized cannot be used.192 Related to enforcement is the question of what happens if one

party or the other exits the agreement—a point which is explored in Section 3.6.

2.5.2 Mutual verification of hardware and code

For at least some kinds of verification, if digital stacks are to be used as part of verification

mechanisms, those stacks must themselves be verifiable. For example, in order to verify

in detail that regulations are being followed regarding AI development or deployment (Sec-

tion 4.5), there must be heavily automated scrutiny of computations and data. In order to

be acceptable to the Prover, the systems undertaking such scrutiny must have been demon-

strated to be compatible with their security requirements. Mutual verification of hardware

and code is one way to do that.

Existing technologies make possible the mutual verification of digital stacks. To implement

this, however, significant effort is needed to actually build (or rebuild) stacks into a form that

is mutually verifiable, and then ongoing monitoring (and perhaps rare inspections) would be

needed to demonstrate that no hardware circumventions are being undertaken.

How can this be done? Previously discussed technologies such as remote attestation and

confidential computing (Sections 2.2.4.2 and 2.2.4.4) allow for software to be verified if the

hardware stack has also been demonstrated to be compliant. As noted in Appendix D, digital

stacks must typically be verified “from the ground up” (with the exception of cryptographic

techniques that allow us to largely ignore the details of communications infrastructure be-

tween two secured systems). As noted in Section 2.2.3, some forms of hardware can be veri-

fied directly while others would require cooperative creation. Furthermore, as noted in Ap-

pendix C.6, mutual verification is expected for the verification infrastructure, but complete

secrecy is needed for at least some of the data that is used for evaluating compliance.

Drawing on concepts explored earlier such as confidential computing and hardware-enabled

mechanisms, the subsections that follow unpack some of the important verification capabil-

ities that are enabled by the mutual verification of hardware and code.

191 Simple “game” rules might incentivize early action. Bounties could require unique exploits, so it makes sense
to register your finding as fast as possible. Rises in bounty value (perhaps with each consolidated version of the
open standard) would incentivize more intense scrutiny.

192 For example, many nuclear weapons have permissive action links, which prevent them from being used by
unauthorized people. Similarly, some hardware governance ideas for AI have included proposals for hardware
that when faced with a request to undertake non-compliant computations would either refuse to operate or self-
destruct. James Petrie et al., ‘Interim Report: Mechanisms for Flexible Hardware-Enabled Guarantees’, 23 August
2024.
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2.5.2.1 Verifiable claims about the equipment contained in a

data center

If a Prover wants to demonstrate to a Verifier that particular hardware (and no other hard-

ware) is in a data center and is arranged in particular ways, they have ample tools for accom-

plishing that goal. Nuclear arms control agreements have employed extensive inspection and

monitoring of buildings, equipment, and personnel.193 Similarly, a Prover seeking to demon-

strate claims about their data center can employ well-established methods for proving that

their buildings abide by design specifications and that hardware identity, configuration, and

connections match expectations, and they can demonstrate that these claims remain true via

monitoring of portals (transit points and other choke-point locations)194 and personnel.

Verifier-employed inspectors might be needed intensively in the early phases of hardware

compliance verification and then only brought back intermittently afterwards. They might

come back in response to a) hardware reconfiguration requests from the Prover (e.g., to up-

date equipment or replace failed hardware), b) challenge inspections from the Verifier,195 or

c) random inspections to check ongoing compliance.

The Prover can make the hardware of the facility tamper-evident in a variety of ways, thus

making a hypothetical hardware tampering attack more difficult and raising the Verifier’s

confidence that no such tampering is occurring in the facility. Crucially, most mechanisms

for tamper evidence would have zero effect on the Prover’s security, thus making them a

potentially desirable way to reassure the Verifier.

A data center could be monitored by overlapping systems of automated sensors, which could

detect a tampering event but could not detect the actual computational activities on the

chips.196 If done correctly, this kind of monitoring also has zero effect on the Prover’s se-

curity, so they can employ these mechanisms extensively to continuously reassure the Ver-

ifier that no circumvention attempts have occurred. These systems would be installed and

monitored with the full cooperation of the Prover and Verifier.

As noted earlier, the ongoing miniaturization of technology raises the prospect of new digital

circumvention techniques that were impossible in prior decades (see Section 2.2.3.2). Expec-

tations for building design, hardware configurations, anti-tamper packaging, and monitoring

must take this into account.

2.5.2.2 Securing and verifying all channels

Section 2.5.1 noted that guarding against attacks requires substantial effort, but also argued

that each potential attack channel provides another avenue for verification. This point is

193 Mauricio Baker, ‘Nuclear Arms Control Verification and Lessons for AI Treaties’ (arXiv, 8 April 2023), https:
//doi.org/10.48550/arXiv.2304.04123.

194 Brian Jennings et al., ‘Advanced Portal Monitoring for Arms Control Treaty Verification’ (Oak Ridge National
Laboratory, 2024), https://www.osti.gov/servlets/purl/2472697.

195 See Section 2.1.3 for more on challenge inspections.
196 Sensors could include visual-range and infrared video cameras, acoustic detectors, radar, and other sensors

such as accelerometers.
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worth emphasizing. To maximize both security and verifiability, it is useful to assume that

all hardware that is physically proximate to computational or networking hardware could be

used for attacks and should therefore be considered as another pathway for credible verifica-

tion. For example, in addition to the two key channels laid out for digital verification based

on computing hardware (Section 2.2.4.4) and networking (Section 2.2.4.8), one can also add

other privacy-preserving information flows by leveraging the information provided by sen-

sors and connections attached to key components such as GPUs, CPUs, and racks. Such chan-

nels could include a) power usage; b) electromagnetic spectrum or thermal monitoring; c)

acoustic sensors and accelerometers. Each of these has the potential to be the pathway for a

security breach. Equally, however, they could be used to help demonstrate to the Verifier that

the declarations made in the primary channels are true and complete. For example, while

high resolution power usage data can be used to exfiltrate data under certain conditions,197 it

is infeasible for aggregated data to present the same danger.198 Furthermore, if the data pro-

vided via the power usage sampling is treated as sensitive and therefore subject to the same

kind of privacy-preserving digital verification techniques as model inputs (e.g., training data

and algorithms) or model behavior, then the remaining danger of this information chan-

nel can be mitigated further (see Section 2.5.3). The residual danger of an attack along any

of these channels can be compared with the gains in transparency that could be reaped.199

Furthermore, since each hardware mechanism could have its own separate hardware root

of trust, physical hardware circumvention attacks would grow increasingly complex as addi-

tional parallel data streams are added—since any one of them makes it possible to notice a

circumvention attempt.200 This approach is certainly not a simple or complete answer to

the transparency-security tradeoff, but this frame does suggest that encapsulating channels

into new, verifiable data streams can be compatible with security needs while also drastically

increasing the Prover’s ability to demonstrate their compliance. Extensive practical work on

each channel would be needed in order to make this vision a reality.

197 The detailed power usage of a GPU (sampling at 1000 Hz) running an AI model can be used to exfiltrate data
even if the stack is employing confidential computing. Lagerros (2025).

198 Aggregate data can still allow you to accurately estimate compute used and—depending on the resolution and
the AI paradigm in use—can help with workload classification. See Lennart Heim et al., ‘Governing Through The
Cloud: The Intermediary Role Of Compute Providers In AI Regulation’ (Oxford Martin AI Governance Initiative,
March 2024).

199 One specific danger for military assets is that any local measurement with an associated timestamp can be
used to locate that object via “triangulation” which allows the location of objects to be estimated based on the
speed of sound or light along with a sharp signal such as a loud sound or an electromagnetic pulse. Potential
mitigations for this danger include never revealing this data outside of privacy-preserving analysis systems and
also carefully scrutinizing the assessment code to ensure that it could not be used for this kind of attack.
200 If securing channels like this is possible, this approach can also provide ways for the Prover to demonstrate

to themselves that their system is secure against an increasing number of possible attacks. Taken to its logical
extreme, a successful effort of this kind could place so many constraints and checks on the digital system that the
Prover might become relatively confident of the integrity and security of their system. However, in considering
such a hypothetical it is important to note that presently there are no civilian AI data centers that are believed
to be robust against serious attacks by a competent cyber state. Getting to robust security will require years of
intense and sustained efforts. Sella Nevo et al., ‘Securing AI Model Weights: Preventing Theft and Misuse of
Frontier Models’ (RAND Corporation, 30 May 2024), https://www.rand.org/pubs/research_reports/RRA
2849-1.html.
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2.5.2.3 Verifiable communication within a data center

Data center hardware can be set up to allow the Prover to make credible claims about the con-

tent of all digital exchanges within the cluster. This can be done by employing networking

hardware capable of both hardware-enabled full text logging and the generation of a stream

of cryptographic commitments which are sent to the Verifier (see Section 2.2.4.8). The com-

mitments sent to the Verifier are credible because the Verifier can see precisely how and when

they are being generated. As explored in Section 2.5.3 below, a stream of commitments of

this kind can allow the Prover to securely demonstrate their compliance with regulations at

a time and place of their choosing while simultaneously protecting their security.

In theory, verifiable networking data streams like this could be installed between all commu-

nicating devices within the data center. In practice, this is impractical. For example, the sheer

quantities of data exchanged between AI chips communicating in a pod (see Section 2.5.4.1)

might be enormous. A more practical approach would involve making targeted use of this

capability to make verifiable claims about the inputs and outputs of key enclosures such as

pods or the data center itself.

A number of questions about this scheme are ripe for future exploration, including:

• Can existing highly performant networking hardware implement this scheme in a way

that could be trustworthy for the states involved? If not, how feasible would it be to pro-

duce relatively performant hardware that can be mutually trusted (see Section 2.2.3.3)?

• If neither category of high performance hardware is available, how can less-performant

but trustable hardware be best arranged to provide verification without substantially

reducing performance (Section 2.2.3.4)?

• Can this scheme remain credible and practical if it uses gateway machines for each pod

to make cryptographic commitments about digital objects in their entirety rather than

each raw packet or data block? This would mean that network verification only sees

exchanges between the pods, not what goes on within them. If this could work, how big

can pods be while remaining governable and practical?201

• If no single piece of mutually trusted hardware can possibly fill this role, could two

or more independently designed and untrusted systems be installed which make the

same cryptographic commitments, with only the Prover’s system copying the plaintext

data?202

201 Calculations provided in Scher and Thiergart (2024) indicate that inference workloads require remarkably
little external bandwidth and that there is a real possibility of training protocols that allow for efficient distributed
training. If these calculations are a good estimate of reality, then there should be substantial room to maneuver
in the design of network topologies to support inference and training as desired by the data center operator.

202 Extending this to three systems (sourced respectively from the Verifier, Prover, and one credible third party)
could allow for further checks, such as automatically alerting all parties if a commitment mismatch occurs.
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2.5.2.4 Digital perimeter: Verifying data center communication with

the outside world

A digital perimeter is a physical, digital, or hybrid boundary system that prevents data from

entering or exiting the enclosed area without being noticed. In a cooperative verification

setting, a verifiable digital perimeter allows the Prover to credibly claim that data cannot

cross the boundary without the Verifier noticing.

There are four ways to implement a digital perimeter with the technologies described in

this report. All of these approaches presume that hardware within the perimeter has been

extensively verified to demonstrate that it is incapable of other forms of communication,

that physical access by personnel is controlled, and that appropriate safeguards are in place

to ensure that additional hardware cannot be infiltrated (see Section 2.5.2 and Section 2.2.3.2).

The four approaches discussed in this report are:

• Air gap: An air-gapped data center with no ability to send or receive any kind of remote

signals.203 In such cases, secure delivery of digital files can be arranged using physical

deliveries of encrypted data and separate deliveries of decryption keys.204

• Network verification: Verification of all network traffic is possible with specialized hard-

ware (see Section 2.5.2.3). This is possible not only at the data center boundary (inputs

and outputs of the whole data center), but also for its subcomponents (e.g., racks or pods)

which themselves can be in enclosures. Overall, a nested set of verifiable networks is pos-

sible, which would ensure that any communications into or out of the data center would

leave multiple traces for verification processes to catch and examine. Circumventing

such a system digitally would require circumventing at least two of the hardware roots

of trust (the data center gateway and at least one pod gateway).205

• Cryptographic boundary: Data center gateways enforce encryption on all inputs and

outputs.206 Both the Prover and Verifier provide cryptographic keys to specialized hard-

ware that will enforce that all exchanges use those keys—decrypting all inputs with both

203 This requirement is much more challenging than it might appear at first glance. Preventing wired electronic
communications is relatively easy, but preventing all meaningful electromagnetic signals is much more difficult.
All potential modes of transmission would need to be examined and accounted for, including acoustic transmis-
sions and personnel-based leaks. Furthermore, as noted in Section 3.5, it is unclear how an air gapped facility
can be reliably verified.

204 Decryption keys can even be delivered for the precise machine(s) that will be examining the relevant informa-
tion. By encrypting a key with the public key of the target machine, one can ensure that only the target machine
can decrypt the resulting ciphertext as long as the private key cannot be stolen (digitally or physically) from the
target machine. Strict data center management and monitoring can help guard against the latter possibilities,
since with sufficiently intense attention from both the Verifier and the Prover, physical and digital attacks will be
very difficult to hide. Note that achieving security of this level will be very challenging. For more on this, see Sella
Nevo et al., ‘Securing AI Model Weights: Preventing Theft and Misuse of Frontier Models’ (RAND Corporation,
30 May 2024), https://www.rand.org/pubs/research_reports/RRA2849-1.html.

205 Note that this scheme presumes physical controls. If physical access is available for an attacker, the guarantees
provided by this scheme are drastically weakened.

206 A more intense variant of this would double-encrypt data at the pod level as well as the gateway level, thus
requiring at least four decryption keys to reveal the data—two from each primary actor. Another variant would
have three or more sets of keys, with one or more controlled by neutral parties in addition to the sets controlled
by the Prover and Verifier.
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decryption keys and encrypting all outputs with both encryption keys (see also Sec-

tion 2.2.4.7.1).207 In sum, this allows both parties to be more confident that neither party

can meaningfully copy the data without the consent of the other party, since neither

party can decrypt the output data unilaterally. Presuming that the hardware is defended

appropriately, this moves the digital perimeter into cryptographic space—thus allowing

more freedom with copying encrypted output files.208 This approach could be desirable

on its own, or it could be employed in conjunction with other digital perimeter designs

to allow for layered checks.209

• Combinationof network verification with cryptographic boundary: Combining the two

approaches above would provide both commitments about all traffic. Network verifica-

tion would make copying very difficult, and the cryptographic boundary should protect

the data even if an attacker manages to make a copy.

In closing, a word of caution. Even if you can inspect all data passing into or out of a data

center, you won’t know its full meaning. Since Verifiers cannot see the inner workings of

the data center, the Prover could undertake sophisticated exfiltration attempts.210 A digital

perimeter is therefore an imperfect verification scheme. It can significantly limit the Prover’s

ability to use their hardware in covert ways that violate an agreement, but alone it is not suffi-

cient to guard against all reasonably possible circumvention attempts. Therefore, to achieve

extremely high certainty, other mechanisms should be used in conjunction with a digital

perimeter, as explored in the next section.

2.5.3 Verifiable confidential computing

To address the transparency-security tradeoff, the ideal setup of a Prover’s data center would

approximate verifiable confidential computing. Here this is defined as computing that is confi-

dential in that no one else can tell what the Prover did, but the Prover retains the ability to

prove (at a time and place of their choosing) what they did in their computations—exactly

and completely.211

207 Encryption and decryption keys would be different, and each of the parties would maintain control of their
own private keys.

208 Copying an encrypted output file does not reveal the information contained in it. The only agents who can
read the file are those in possession of all of the needed decryption keys.

209 This is a mechanism that combines enforcement and verification. It is included in the report because it can
substantially change the verification needs of an agreement.

210 One hypothetical example is that the Prover figures out how to hide data in the least significant bits of out-
puts (such as timestamps or floating-point numbers), thus exfiltrating information without the knowledge of the
Verifier because those bits might normally be assumed to be noise. Noise-free replications of machine learning
computations might be possible, but may also be difficult (see Shavit, 2023).

211 This term should not be confused with verifiable computing, which allows for proof that a computation was
done, but does not allow for proof that no other operations were done. Another difference between the two is
that verifiable confidential computing assumes that the Prover wants the ability to keep their information secret,
while verifiable computing does not make that assumption.
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There are two aspects of this theoretical ideal:

• Security: Confidential computing, or a similar set of security features that allow the

Prover to be confident that no one can steal their data during any of the planned com-

putational phases.

• Verifiability: The Prover has the ability to robustly demonstrate what they did with

their computations. Here it is presumed that they choose to do so in a strictly privacy-

preserving way, but in theory they could also simply reveal the relevant data publicly if

they deemed that politically acceptable.

No existing system is known to accomplish this goal, but an approximation of this ideal stan-

dard appears to be possible using existing hardware. Here is one potential approach, which

is also illustrated in Figure 2.1 below.

• Mutually verified data centers: Two data centers have mutually verified hardware (see

Section 2.5.2.1). Presumably, one is in the Prover’s territory and the other is in neutral

territory (see Section 3.6.1).

• Digital perimeters: Each data center has a digital perimeter (see Section 2.5.2.4).

• Verifiable operations: Within the digital perimeter of the Prover’s data center, they

have arranged hardware that allows them to create one or more sets of cryptographic

commitments.

◦ Two primary methods for such commitments are explored in this report. These

could in theory be implemented in parallel for more robust verification (see Ap-

pendix C.5):212

▷ Confidential computing allows the Prover and Verifier to remotely attest the

system’s integrity as well as the code that will be run and cryptographic com-

mitments for all input data, output data, and hidden code (see Sections 2.2.4.4

and 3.5).

▷ Verifiable networking, where all data exchanges between key nodes of the net-

work can be tracked by cryptographic commitments and later revealed in full

(see Section 2.5.2.3).

212 This report will not explore the full details of how these schemes can be combined, and this should be an
area of ongoing research. In general, complex combinations of cryptographic systems can create new failure
modes. For this reason, it is worth noting at the outset that some confidential computing details might need to
be carefully designed to support any combination. As a concrete but notional example of this, rather than using
hardware roots of trust directly as private keys for network traffic, it may be necessary for the code on the secure
enclaves to generate a public/private key pair that is specific for the workload (such as executing a training plan)
and which can be used as the only key for encryption and decryption of network traffic within the “Verifiable
operations” hardware. The reason that separate keys for each workload are desirable is because any key used to
encrypt network traffic would have to be revealed within the “Verification computations” box on the right side
of the diagram. This revelation allows the cryptographic commitments made on the network to be connected
to the revealed plaintext data. Revealing a hardware root of trust private key from one or more of the Prover’s
machines is not advisable even if it were a practical possibility, since those hardware roots of trust are a key part
of the Prover’s confidence that their computations were secure in the first place.
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◦ Furthermore, additional supporting streams of cryptographic commitments are

possible if needed to increase the credibility of the Prover’s claims, drawing on

data recorded by other sensors placed in the data center (see Section 2.5.2.2).

• Verification computations: Within the digital perimeter of the neutral data center, con-

fidential computing is used to allow the Prover and Verifier to cooperatively undertake

verification computations without revealing any sensitive information (see Section 3.5).

• Common knowledge: Both the verification results and the cryptographic commit-

ments relating to the verifiable operations are common knowledge for the Prover

and Verifier.

In sum, the Prover is able to demonstrate that their computations are compliant while pre-

serving their security. Furthermore, presuming that the Verifier believes that the evaluations

they create for testing compliance are likely to catch non-compliance, this overall exchange

can allow the Verifier to achieve high confidence in the Prover’s compliance.213 An important

facet of this certainty is that this scheme allows the Prover to demonstrate the compliance

of all computations that take place within a designated portion of their infrastructure. Fur-

thermore, in this scheme the central compliance tests are run against the plaintext data and

not a noisy proxy such as electric power draw or heat emissions, therefore allowing detailed

compliance checks rather than broad guesses about activities.

This approach has limitations in its scope. First, it is a digital verification system, so all rules

must be operationalized in digital operations over digital objects. These operations might

be enormously complex, such as having a specialized AI system read text or watch video

feeds, but they must be digital. Second, this approach is not sufficient (alone) to undertake

verification of computations that include external tools such as the Internet. This might be

a salient domain of verification given that there already exist AI tools that use the internet

extensively as part of their workflow.214 The usage of external tools would allow the AI model

to both exfiltrate and infiltrate data, thus raising potentially unresolvable problems regarding

verification. Third, it presumes that verification of the digital objects can be undertaken by

software alone. The potential for adding humans to this scheme is explored in Section 3.5.

This stack avoids the centralization of power, since the Prover remains in control of their

own hardware and data. The neutral data center is a focal point for governance processes,

but there is no requirement that only one facility be used for that purpose. Multiple neutral

facilities in different jurisdictions might be desirable for providing multiple independent

checks of compliance for crucial activities (e.g., in case of a red flag or political challenge).

This stack also allows the Prover to demonstrate their compliance with a large number of

different requirements. This infrastructure approach allows the Prover to build a single sys-

tem which can allow them to demonstrate their computations’ compliance with global rules,

213 Furthermore, further streams of data can be added which can increase certainty of compliance without any
large changes to security (see Section 2.5.2.2 and Appendix C.5).

214 ‘Claude Can Now Use Tools’, Anthropic, 30 May 2024, https://www.anthropic.com/news/tool-use-ga.
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Plaintext transcripts

Inputs

Prover

Verifiable operations

Training, fine-tuning, or inference

Digital perimeter

Prover-run mutually verified data center

Confidential computing

Verification computations

Digital perimeter

Neutrally-run mutually verified data center

Evaluation content

Verifier

Cryptographic commitments

Verification results
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Encrypted data
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Legend:

Figure 2.1: A schematic summary of verifiable confidential computing as applied to train-
ing, fine-tuning, or inference, and the associated verification of claims about rules followed
during those processes. The conceptual process is as follows: The Prover keeps secret their
inputs and the plaintext transcripts of their computing operations. The Verifier keeps secret
their evaluation content. The Prover-run mutually verified infrastructure allows computing op-
erations to be kept secret while also producing a stream of cryptographic commitments which
become common knowledge. The cryptographic commitments are used in the neutral mutu-
ally verified infrastructure to prove that the data revealed securely within this infrastructure
by the Prover is in fact the true data that was produced during the earlier computations in
the Prover’s infrastructure. Privacy-preserving verification computations are run on the true
data and the evaluation content, producing a set of verification results which become common
knowledge. Finally, the sensitive data is verifiably deleted from the neutral infrastructure.
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minilateral rules (e.g., potential OECD standards), regional rules (e.g., European Union laws),

and even domestic law.215

2.5.4 Different enclosure sizes for AI verification

Enclosures provide physical and logical separation between their inner hardware and the

outside world, thus allowing governance and verification processes that are otherwise diffi-

cult to achieve. For AI verification, one proposal is to enclose individual AI-specialized chips

in a way that makes them easier to govern and verify,216 while many other proposals—as

well as much of the discussion in this report—focus on data centers as the primary govern-

able and verifiable unit of computational hardware. Both extreme ends of this spectrum are

certainly valid, and they provide different kinds of verification abilities with different trade-

offs. It is very plausible that a combination of both will be desirable for states engaging in

detailed agreements about their AI development and deployment. However, other, inter-

mediate hardware enclosure sizes may also be extremely important. Each of the following

subsections describes an enclosure size and why it might be distinctly useful.

2.5.4.1 Pods

A pod is a unit of AI-specialized computational hardware that contains dozens to hundreds

of AI-specialized chips which are intended to be used together for related tasks such as

model training or inference. Today, more than one AI-specialized chip is required to train

or quickly run inference on even medium-sized models. AI-producing organizations at-

tempt to design pods that are optimal for their workloads, but causation can also flow in

the other direction, as available hardware units can strongly shape which arrangements are

optimal. For example, NVIDIA is producing 72-GPU rack-sized machines,217 which may lead

AI-producing organizations to organize their workloads around that pod size.

Since the pods are designed to accomplish crucial workloads for training or inference,218 they

are likely a useful unit (or agglomeration) of hardware to enclose and govern. For example, a

pod is particularly well-suited for being the level of hardware organization for making veri-

fiable claims about model training steps or inference exchanges, both of which are discussed

elsewhere in this report as key operations that states might seek to govern and verify. Pod

governance and verification could perhaps be conducted through a specialized gateway ma-

chine. The hardware internals of pods could be inspected and their overall physical integrity

215 Using such a scheme for domestic compliance checks could allow domestic regulators to very credibly
demonstrate that they lack the ability to expose private personal or business data via their compliance checks.
Such an approach to regulatory oversight might therefore face less political pushback from groups that are sensi-
tive about personal or business secrets. To implement this approach in high-resource environments, a domestic
regulator might choose to build their own “neutral” facility with the mutual verification of industry and civil
society groups that seek to defend the privacy of their constituents. In low-resource environments, this scheme
could allow compliance demonstrations for all applicable regulations even if no new infrastructure is added.

216 James Petrie et al., ‘Interim Report: Mechanisms for Flexible Hardware-Enabled Guarantees’, 23 August 2024.
217 ‘NVIDIA GB200 NVL72 GPU – Optimized for AI and Data Centers’, NVIDIA, accessed 15 March 2025, https:

//www.nvidia.com/en-gb/data-center/gb200-nvl72/.
218 Different pod sizes will likely be desirable depending on the workload.
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could be monitored (see Section 2.5.2.1 and Section 2.5.2.3). To allow for improved verifiabil-

ity and a reduced vulnerability to proximate side-channel attacks, pods could be physically

isolated by at least a few feet from other data center hardware.

One challenge with pods is how to handle maintenance issues with their components—

especially their AI-specialized chips, since those often have issues. If a chip dies, it might

be possible for the pod’s hardware to verifiably show that it has been turned off (see also Sec-

tion 2.5.2.2 for parallel ways to make this claim). However, the data center operator might

want to replace problematic components quickly, or otherwise update or tweak hardware

on a regular basis. These operations would incur a risk to the verification process unless the

Verifier had an inspector oversee the operation, just as they would have done for the data cen-

ter or pod previously to verify it in the first place (see Section 2.5.2.1). Further work should

be done to understand the efficiency overhead of having Verifier inspectors present for all

hardware work on chips, including those within a pod.

2.5.4.2 Containerized data centers

Small self-contained data centers might be verifiable in important ways while remaining

highly secure for extremely security-sensitive organizations such as militaries. Detailed lo-

cation information for military hardware can be a key vulnerability (see Section 1.5.1.1). This

raises the question of whether digital verification processes might be abstracted in a way that

reliably protects location information while still allowing politically important verification to

occur. This section describes one potential approach to solving this problem: containerized

data centers.

A containerized data center would be contained in a standard shipping container of whatever

standard size is convenient for the Prover.219 The hardware within would be mutually veri-

fied in a controlled setting (see Section 2.5.4.3) to demonstrate precisely what hardware was

inside and in what configuration (see Section 2.5.2.1). The container shell (or a layer within)

would be the enclosure security boundary, and this would encapsulate the verified AI hard-

ware. Hardware mechanisms could be installed to provide parallel channels of information

to demonstrate that the inner hardware has not been tampered with (see Section 2.5.2.2)220—

with all digital exchanges being mediated through Prover-run network infrastructure to allow

them to obfuscate the location.221 Once the inner hardware has been verified and the veri-

fication data streams enabled, the container could be moved by the Prover to any location.

219 The reasoning behind this suggestion is similar to the reasons why some weapon systems are hidden in
containers—they are generic, mobile, and common. Furthermore, a shipping container may be large enough for
a non-trivial unit of computing power while also being small enough to not rely on unique or rare infrastructure—
since such rare infrastructures could give away its location.

220 Depending on the level of security needed, many techniques could be used in parallel. Cryptographic ex-
changes could use the hardware roots of trust for the whole enclosure as well as subsystems such as chips, pods,
network switches, and monitoring hardware—thus making circumvention more difficult. While stealing one
root of trust might be reasonably tractable for a state actor given enough time, breaking several parallel systems
without triggering any alarms should be much less feasible.

221 The Prover could of course cut off this communication, but that would be noticed by the Verifier. Some
amount of enforcement could be built into the agreement, such as an automatic requirement that an enclosure
that loses communication for X seconds is automatically required to be brought in for reinspection.
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In sum, the container would house one or more pods of AI-specialized chips with a clear se-

curity boundary around them—thus enabling the Prover to demonstrate to the Verifier via

credible data streams that the activities of the chips are compliant (see Section 2.5.3) while

simultaneously demonstrating that the inner hardware has not been tampered with. The

Verifier does not know the actual location of the hardware, but retains sufficiently continu-

ous digital contact to be relatively confident that the enclosure is not being tampered with.

Presuming that the roots of trust are not broken, this allows the Verifier to monitor and verify

the hardware continuously, even if they don't know where it is.222

Three major issues of this approach are worth highlighting, along with speculative avenues

of mitigation for each. First, data streams from the enclosure might contain implicit loca-

tion information, such as electromagnetic (EM) signals or acoustic noise with recognizable

signatures. Hypothetically, a Verifier attempting to locate the containers could trigger “loud”

events of either kind—such as an EM pulse or a minor earthquake—and observe the exact

timing of the expected spike in the readout. This would allow them to locate each container

using a small number of such events triggered from different locations.223 This type of at-

tack could potentially be mitigated through a combination of acoustic and EM shielding and

by processing all data through privacy-preserving evaluations only. Since the Prover can de-

mand to see the code of such evaluations, they should subject it to extreme scrutiny. Sensors

that are lower accuracy and lower time resolution may also help—since sensitivity below a

certain level may make them infeasible vectors for location attacks. Finally, there may be

ways to obfuscate the precise timing of events within the enclosure to ensure that verifica-

tion code cannot extract precise reactions. While none of these mitigations can be expected

to be perfect, they may allow the security concerns of the Prover to be addressed sufficiently

for a deal to happen.

Second, significant inefficiencies might be introduced by the requirement that hardware not

be manipulated after it leaves the verification facility. If hardware malfunctions must either

be left unaddressed or require another visit to the hardware verification facility, they could

end up costing a moderate amount in terms of downtime, relocation, and reinspection. One

potential mitigation is for the participating parties to plan for hardware malfunctions at a

certain rate and ensure that their AI computations can proceed robustly regardless—thus

reducing the rate of needed visits to the verification facility. Some over-capacity or graceful

degradation might be required for such a scheme.

Third, only limited agreements might be possible in areas where there are extreme security

concerns. It may or may not be realistic for agreements over military hardware to require

byte-by-byte commitments that are then verified in another facility. If this is the case, it

222 This approach embraces the concept of a logical location or a relative physical location with respect to a veri-
fied and monitored space—the enclosure. This approach can be contrasted with the idea of an absolute physical
location (see Section 2.2.2.1).

223 The details of such an attack are beyond the scope of this report.
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is worth noting that even less specific or aggregate data could still be very useful for states

attempting to reassure one another for security purposes.224

Containerized data centers are a speculative proposal, intended as a workable way to provide

deep and continuous verification of rule enforcement while also ensuring that states can keep

their military AI resources secure. The general approach appears worth exploring further,

but it should be regarded as highly speculative until further work has been done.

2.5.4.3 Hardware verification facility

A hardware verification facility is a mutually verified and secured facility that allows other

objects to be brought in and verified by both parties.225 Cooperative facilities of this kind

can solve information problems that may not be solvable via either sequential verification

(where one actor verifies the object before handing it off to the other actor) or unilateral ac-

tion. For example, certain kinds of hardware scrutiny might involve substantial and complex

testing hardware. While each of the Prover and Verifier might be able to verify that a piece

of hardware is compliant, if either actor subjected the hardware to intense tests in an opaque

facility, the other actor might rightly fear that a hardware circumvention attack was being

undertaken. No ordering of sequential verifications can solve this problem, but cooperative

verification could do so.226

If both the Verifier and the Prover need to simultaneously prove that mobile hardware is

both compliant and unaltered, a hardware verification facility is one way to address this

problem. As noted for containerized data centers (see Section 2.5.4.2) and for mobile AI-

enabled devices (see Section 4.5.2.3.6.c), hardware could be brought into facilities to allow

parallel efforts by inspectors and engineers from both parties. Similarly, hardware that sup-

ports verification of networking or other channels might need to be mutually verified in this

224 Consider a Verifier and Prover who are convinced that AI development (not deployment) is the primary way
by which power would shift between them, and thus they seek to monitor each other’s development with care.
In this scenario, they could agree to undertake only certain kinds of operations (such as inference) in container-
ized data centers, with all major development work taking place in larger data centers with well-known locations.
This agreement both simplifies their verification needs and provides them with some strategic stability. Judging
from historical precedent, states can be expected to be leery of verifiably regulating in detail their use of final
systems such as weapons, but they tend to be somewhat more willing to regulate what they build and maintain
during peacetime. AI development being in larger centralized data centers means that such development is easier
to target. So if a state begins the process of exiting the agreement, their development resources will be at risk but
not their warfighting resources. This disincentivizes first strikes to some extent, since the targeted state would have
a very good likelihood of retaining at least some of its mobile inference capacity. In this scenario, since these
states are assumed to believe that only AI development—but not inference—can substantially shift relative power
between them, holding that development under greater scrutiny and at greater vulnerability to attack would
make it more possible for the states to bargain over the “roots” of their power and thus avoid creating unaccept-
able power shifts that could lead to war. For more about why bargaining over the roots of power is advantageous,
see Thomas Chadefaux, ‘Bargaining over Power: When Do Shifts in Power Lead to War?’, International Theory
3, no. 2 (2011): 228–53.

225 This is an enclosure to the extent that it includes a strict security boundary with physical and digital tran-
sit restrictions. Unlike the other enclosures discussed, it is not primarily focused on housing AI-specialized
computing hardware.

226 If the primary concern is that the final actor who takes the hardware into their facility can modify it, with the
further presumption that the other actor could detect that modification if they test the device afterwards, then
there are potential sequential protocols (such as using a radiological random number generator to randomize
the testing order in a testing phase of indefinite length) that could address this problem as long as the verification
processes are fast and cheap.
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manner, since both sides would want to ensure that the hardware is designed only to achieve

its narrow purpose and has not been modified by the other party (see Section 2.2.4.8 and

Section 2.5.2.2).
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3 Political options and tradeoffs in

AI verification

3.1 Which stages of the value chain should be governed?

A key political question for the creation of a verifiable international agreement is which stage

of the AI value chain should be governed and verified. For regulatory agreements (see Sec-

tion 4.5), interventions can be aimed at different parts of the timeline of AI development

and deployment, ranging from before the model is created up until it is running inference

or being deployed on a mobile device.227

Training Fine-tuning

Training institution Fine-tuning institution Deployment institution

Inference 
(In a data center)

Data center phases of AI development and deployment

Figure 3.1: A highly simplified AI value chain through to data center inference. A single
institution may also manage multiple stages.

Development context

Model development and 
testing

Device-model

pairing

Development institution Hardware pairing institution

Pairing context

Deployment institution

Device activation

Usage context

Verifiable agreement for AI-enabled devices

Figure 3.2: A highly simplified illustration of an international agreement over the AI value
chain for AI-embedded devices. One institution might manage multiple phases of this pro-
cess.

227 See Section 1.5.3 for an introduction to these terms and stages.
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Governing each phase comes with potential costs and benefits, and not all rules can be ap-

plied at each phase. In particular, rules that require differential model behavior in different

contexts cannot be implemented via rules on model creation.228 For example, differentiating

between white hat and black hat cyber efforts may be impossible without detailed knowledge

of the usage context—so a model responding to queries would have no way of differentiating

between the two.229 However, as noted in Section 1.4, upstream rules can have a significant

effect on the downstream ecosystem and even on the states’ perceptions about macroscopic

concerns such as relative power. Upstream rules have the potential to more powerfully shape

the industry, but they are too blunt to solve every governance problem.

The different phases can also be seen as multiple opportunities to ensure that rules are ac-

tually being followed and thus reassure the parties to the agreement (see Appendix C.5). In

this sense, governance of each phase could diverge to some extent in its details, but in each

downstream layer it would also be possible to check some aspects of the governance that

took place in the earlier layers.230 For example, if certain types of data are forbidden in

training, downstream evaluations can also test for related capabilities that the AI could only

have learned from the forbidden data.231

3.1.1 Enforcement shapes verification

Most forms of agreement enforcement are outside the scope of this report as they include

the vast range of actions that are available to states, including diplomatic actions, sanctions,

and war.232 However, enforcement of some rules is implicit in some of the proposed verifi-

cation approaches described here, as these enforcement choices can significantly shape the

associated verification problems. This report does not claim that baked-in enforcement of

these kinds would be enough to ensure that a given agreement would be deemed politically

credible. At most, the points discussed below delineate the shape of the strategic problem

without fully determining it.

Three categories of enforcement are highlighted in this report. First, a number of proposed

hardware-enabled mechanisms are deliberately restrictive in ways that change the shape of

the verification problem. Licensing, for example, can shift verification and enforcement to

before the computations of interest take place (see Section 2.2.4.5). Similarly, enforced en-

cryption of outbound data can help actors move verification computations to a time and

228 Hypothetically, future models might be sophisticated and well-understood enough that detailed context-
specific downstream rules could be effectively enforced through upstream governance—such as rules about
model inputs or behavior—but for now this remains a speculative idea.

229 In this example, the model does not have knowledge of its usage context and therefore cannot tell if it is
responding to queries from appropriate authorities (such as “white hat” cybersecurity professionals) or nefarious
actors (“black hat” hackers). The social implications of the model’s responses might be drastically different in the
two scenarios even if the queries themselves are identical.

230 This is analogous to the “swiss cheese” defense model that has been proposed in other areas, including AI
safety. Md Shamsujjoha et al., ‘Swiss Cheese Model for AI Safety: A Taxonomy and Reference Architecture for
Multi-Layered Guardrails of Foundation Model Based Agents’, in 2025 IEEE 22nd International Conference on
Software Architecture (ICSA) (IEEE, 2025), 37–48, https://ieeexplore.ieee.org/abstract/document/1097
8931/.

231 A remaining problem on this front is that of password-locked sandbagging models, discussed in Appendix G.
232 For the theory of enforcement and verification used in this report, see Section 1.4.
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place that is better suited for both, providing credible assurances of information security

to each actor while also allowing political flexibility through the timing of verification (see

Sections 2.2.4.7 and 3.1.3 as well as Appendix C.2). Second, robust hardware security can in-

volve mechanisms that disable the hardware if it is removed from its expected configuration

(see Section 2.5.1). Third, enforcement is also implicit in choices about where to locate re-

sources, since parties exiting an agreement might be able to seize any resources located on

their territory (see Section 3.6).

3.1.2 Strict governance of even one part of the AI value chain

can be useful

It may be possible for strict decisions at one level of the AI value chain to substantially change

the governance problem for downstream levels. Among other possibilities, upstream con-

trols can shape which actors can participate in downstream activities and also simplify the

associated verification.

Here are several illustrative examples of potential interactions of this shape, roughly ordered

from least speculative to most speculative:

1. Placing controls on AI-specialized hardware—and on the technologies that allow the

creation of that hardware—can shape which actors can gain access to a given level of

capability (see Section 1.3).

2. Sufficient control of inference-specialized hardware233 could ensure that only verified

models are allowed to run at large scale.234

3. If model training data can be controlled sufficiently—or robust unlearning employed at

scale—then it might be possible to create models that are verifiably more safe for broad

use and thus amenable to both open sourcing and widespread use.235

4. Strict governance of model creation can:

a. ensure that copies of important models cannot be made. This helps mitigate the

danger of proliferating capabilities, as well as assisting with the governance of fine-

tuning and inference (see Section 4.5.1.4).

b. ensure that models with robust CBRN capabilities are not created (see Sec-

tion 4.5.1.2.2).

233 Currently, AI hardware is fairly general-purpose, with some differential abilities available for different classes
of chips. Speculatively in the future we might see intense hardware specialization toward different workloads.

234 This is only moderately speculative since there are only a very small number of suppliers of such hardware,
thus allowing key governments to both track and govern this hardware if they choose to. Such tracking will
certainly not be perfect since there are many untracked chips in the wild, but even tracking a substantial and
growing portion of the world’s inference capacity could have very meaningful governance ramifications.

235 As of this writing, it is unclear whether models in the current paradigm can be made robustly safe in this
way even if a capable team attempted to do so. For more on unlearning, see Fazl Barez et al., ‘Open Problems in
Machine Unlearning for AI Safety’ (arXiv, 9 January 2025), https://doi.org/10.48550/arXiv.2501.04952.
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c. ensure that models beyond a certain size236 are infeasible to create (see Sec-

tion 4.5.1.2.1).

5. Common tools such as Internet browsers could be upgraded to allow them to check

certificates for all AI tools that they interact with, similar to how transport layer security

(“https”) is strongly incentivized by browsers today.237

3.1.3 Timing of verification

Verification activities are not always closely tied in time to the activities that they are verify-

ing. In fact, at least four different moments in time might be relevant for complex schemes:

1) when rules are actually implemented by the Prover, 2) when the Prover provides a commit-

ment238 to the Verifier about what was done, 3) when the Verifier is able to check the Prover’s

claims, and 4) when post-verification enforcement takes place if needed.

The time gaps between these phases can be due to either technical or political choices. For

example, technical limitations may mean that in-flight verification of inference rules is infea-

sible at scale (see Section 4.5.2.3). Relatedly, the security sensitivity of both the Prover and

Verifier might cause them to want to use a highly specialized verification facility (see Sec-

tion 3.6.1), rather than Prover-operated hardware, for checking compliance with rules about

AI development or deployment.

Generally speaking, the Verifier would like to keep delays small to minimize the time that a

Prover could be acting out of compliance. Equally, however, the Prover might generally pre-

fer larger delays, since escrowing compliance data can also help them alleviate their concerns

about security risks (see ‘Cryptographic escrow’ in Appendix C.2). It might also be the case

that both actors might desire tighter timelines to make their agreement more robust, since

as noted in Section 1.4, rapid iteration can allow for more robust cooperative equilibria.

3.2 What activities need to be verified?

A central political question for the negotiation of verifiable agreements is: What activities need

to be verified? A related question, discussed below, is: how much certainty of compliance is

needed? (See Section 3.3)

The breadth of activities to be governed and verified could touch on many domains, but only

one will be discussed here: compute hardware. One of the most technically challenging types

of agreement to verify that is discussed in this report is the regulation of data center-based

236 Often model size is measured by the model’s number of parameters or quantity of compute used in
its creation.

237 This proposal would require significant changes in the entire digital ecosystem which are probably infeasible
in the short run. For example, all APIs could be required to carry certificates of their host institution and the AI
models they employ. Such a systemic scheme could perhaps borrow from ideas raised by the Coalition for
Content Provenance and Authenticity, visible at https://c2pa.org.

238 See Section 2.2.1.3.
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AI development and deployment (see Section 4.5.1 and Section 4.5.2.3), and the primary pro-

posed mechanism involves verifiable controls on computational hardware.

Presuming that a verifiable agreement is being negotiated, one of the open questions will be

how much hardware is “in scope” for the agreement and must therefore be regulated and

verified. If the negotiators decide to focus on only the kinds of hardware with maximal AI

capabilities, they will focus on cutting edge AI-specialized chips.239,240 If even prior genera-

tions of AI-specialized hardware are of concern, then older AI-specialized chips would also

be included. Going further still, if commodity hardware such as consumer GPUs is deemed

a concern, then a staggering number of chips would be in scope.241 Similarly, if states are

negotiating the rollout of a governance and verification agreement for AI, they might choose

to begin with the cutting edge chips and broaden from there, thus allowing their efforts to fo-

cus on the most important resources first. Furthermore, verification activities—or the hard-

ware’s compatibility with the transparency-security tradeoff—may be dependent on chip

features such as confidential computing, and only relatively new chips (as of this writing)

have that capability.

3.3 How certain must the Verifier be of the

Prover’s compliance?

Another salient political dimension for the negotiation of verifiable agreements is how cer-

tain the Verifier needs to be of the Prover’s compliance. Note that this is related to the ques-

tion discussed above regarding the activities to be verified. These two dimensions may be

politically tied together or may vary somewhat independently. Consider the scenario where

a foolproof (perfect certainty) verification system is installed which covers 80% of the Prover’s

computational hardware. How concerned should the Verifier be about that remaining 20%?

Other than the general guidance provided above about the relative importance of different

kinds of hardware, there is no short answer to this question. Depending on the political

reasons for the agreement, 20% of activities being unseen might be politically reasonable

or unreasonable.

Presuming that some portion of activities have been designated to be verified, the question

still remains in a more specific form: for the verified activities, how much certainty of com-

pliance is needed? No agreement in history has been perfectly verifiable, because perfect
239 A few million cutting-edge AI-specialized chips exist today.
240 Note that some current high-end GPUs are capable enough at AI operations that their governance may be

needed—or future consumer GPUs might need to be limited in their ability to undertake AI operations. Erich
Grunewald, ‘Are Consumer GPUs a Problem for US Export Controls?’ (Institute for AI Policy and Strategy, May
2024).

241 The vast majority of consumer GPUs are significantly slower and less capable than the hardware used by fron-
tier model developers, or are embedded in consumer devices such as gaming consoles and PCs, and are otherwise
not very useful for large-scale AI computations. This report assumes that decentralized training and inference
is possible, but nonetheless assumes that AI-specialized compute has a significant computational advantage over
other hardware—and this advantage is increased when compute can be placed in large concentrations. While
consumer GPUs are unlikely to play a key role in creating or running the largest and most capable models, these
devices may nonetheless be relevant for governance depending on the political needs being addressed. See also
Grunewald, 2024.
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certainty was not reasonably achievable or practical. In some cases, such as the INF Treaty,

rather high certainty was achieved through years of nuanced negotiations and a tight focus

on a specific kind of activity.242

Political actors will need to decide how much certainty is desired, and what level of certainty

the agreement will require given other tradeoffs such as time, costs, and security risks. Luck-

ily, fine-grained calibrations of certainty might be possible, because there are a relatively

large number of tools available that can be ratcheted up or down in their intensity depending

on the level of certainty needed—particularly for hardware-centric governance. Verification

mechanisms can be combined and even arranged into independent systems that allow for a

variety of different ways of catching non-compliance (see Appendix C.5). States can also vary

the breadth of their agreement (Section 3.2), the phases under verification (Section 3.1), and

many specific facets of how information is collected and revealed (for one example among

many, see Section 2.2.4.3). Agreements which focus on the verification of personnel are much

more constrained, since oversight of personnel is not scalable in the same way as hardware-

enabled oversight. For those agreements, the level of realistically achievable certainty might

be much lower than what is achievable with hardware.243

3.4 On-chip vs off-chip hardware mechanisms

If hardware mechanisms are to be employed as part of the verification stack, one key question

is whether these mechanisms should be installed within AI-specialized chips themselves or

within other hardware components. On-chip mechanisms are potentially desirable for a

number of reasons, but they are also subject to particular challenges which other forms of

hardware mechanisms do not have.

On-chip mechanisms are potentially desirable in many ways, only some of which will be

explored here.244 First, AI-specialized chips are perhaps the highest-leverage factor in an AI

governance system, since they are physical, countable, and come from a highly concentrated

supply chain. Second, crucial parts of the AI value chain are heavy computational workloads

on these very chips. Third, data center-quality AI chips are currently very distinct from

the semiconductors used in all other domains—including in general-purpose computation

and embedded devices across the economy. Fourth, on-chip mechanisms could allow for

the creation of mechanisms that are difficult to tamper with, thus making it infeasible for

low-resource actors to circumvent the rules.245 Fifth, on-chip mechanisms allow for close

coupling between verification and enforcement mechanisms, such as licensing systems un-

242 Part of the challenge of the INF verification provisions was distinguishing very similar missiles from one
another when one missile was governed under the agreement but the other was not. See Toivanen, ‘The Signifi-
cance of Strategic Foresight in Verification Technologies’.

243 Of course, for domains that are amenable to personnel and hardware based verification, both families of
approaches could be employed in parallel.

244 Aarne, Fist, and Withers, ‘Secure, Governable Chips: Using On-Chip Mechanisms to Manage National Secu-
rity Risks from AI & Advanced Computing’; Kulp et al., ‘Hardware-Enabled Governance Mechanisms’.

245 As discussed in Section 2.2.3.3, the sheer complexity and layers in advanced chips make them difficult to
understand, let alone modify in a hardware-level attack. By contrast, simple single-layer semiconductors built
on old semiconductor nodes might be successfully attacked by relatively unsophisticated actors.
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der which remote permission would be required in order to unlock the full capabilities of

the chip.246

The challenges of on-chip mechanisms are similarly numerous and nuanced, so only a brief

description of a few of them will be provided here. First, utilizing on-chip mechanisms for

governance purposes requires that new chips be produced with those mechanisms which

can then gradually supplant existing chips—a process requiring at least a few years of lead

time. Therefore, if an agreement required a new on-chip feature, the preparation of that

feature would need to occur years before the agreement could be fully implemented (see

Section 2.2.3.1). Second, conducting mutual verification of on-chip mechanisms on leading

edge semiconductors would require extensive verification of the activities of leading chip

design and fabrication companies, who will be extremely protective of the secrets that en-

able their competitive advantages. Without mutual verification during chip creation, states

would have to either use verifiable semiconductors (most likely older node chips which are

less performant) or accept that they cannot verify that the chips are not compromised or

backdoored somehow (see Section 2.2.3.3 and Section 2.2.3.4).

In sum, on-chip mechanisms have great promise due to factors such as their close proximity

to a key node of governance and their potential tamper resistance, but they also seem likely

to face political challenges centering on the tension between the necessity for mutual verifica-

tion and companies’ desire to protect extremely valuable trade secrets. By contrast, off-chip

hardware mechanisms are somewhat more conceptually distant from the computations at

the heart of the AI value chain, but they have much more potential for politically feasible

mutual verification.247 Both on-chip and off-chip hardware mechanisms appear worthy of

greater scrutiny.

3.5 Security-preserving digital verification:

Are humans needed in the loop?

Many of the verification mechanisms discussed in this report require a way to securely evalu-

ate sensitive information without revealing either the information or the detailed contents of

the evaluations to anyone.248 This subsection describes a continuum of ways that this prob-

lem can be solved, thus allowing the Prover to demonstrate their compliance to the Verifier

without the Verifier or the Prover learning any information which is not strictly required.

The continuum explored below ranges from purely automated privacy-preserving compu-

tations to a scenario where human assessors are given wide latitude to explore the provided

information to ascertain compliance. This continuum contains a risk-risk tradeoff. Purely

automated evaluations are somewhat less trustworthy for the Verifier than a human assessor

246 Kulp et al., ‘Hardware-Enabled Governance Mechanisms’.
247 For example, early work on hardware enclosures has illustrated how untrusted AI chips can be made gov-

ernable and verifiable by enclosing them in mutually verified hardware. See Section 2.5 and James Petrie et al.,
‘Interim Report: Mechanisms for Flexible Hardware-Enabled Guarantees’, 23 August 2024.

248 As discussed in later sections, digital objects being checked for completeness and compliance could include
training plans, models, training transcripts, inference plans, and inference transcripts.
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(who would also be augmented with all evaluation tools). Equally, however, the Prover would

rightfully worry that a human assessor would find ways to remember or transmit secret in-

formation beyond that needed to verify compliance with the agreement.

Confidential computing allows the verifiable execution of a set of computations which ac-

complish a computational task without revealing extra information to any of the parties (see

Section 2.2.4.4).249 Importantly, confidential computing allows both the Prover and the Ver-

ifier to review code before it is run—but it also allows them to protect crucial data from

each other.250 Furthermore, this approach may address the computational side of the “Who

watches the watchers?” problem—where verification processes themselves must be subject

to verification, with the Prover being able to verify that the Verifier is running appropriate

code.251 Confidential computing capabilities are available on recent GPUs, such as the H100

from NVIDIA, so nothing fundamentally new needs to be added to leading AI-specialized

hardware in order to allow confidential computing.252 In a nutshell, confidential computing

would allow sensitive data from both the Prover (model and inputs) and the Verifier (evalu-

ation tools, content, and even AI systems) to be present on the same system while retaining

full information security for both parties. This allows even extremely elaborate verification

computations, which might be required for sufficient transparency that the Verifier is reas-

sured about the Prover’s compliance.

Another more speculative approach to this problem is that of zero-knowledge proofs. A

zero-knowledge proof allows a Verifier to know a governance-related fact with certainty

despite not having direct access to any of the data that proved that fact. Zero-knowledge

proofs are a potentially ideal approach for the transparency-security tradeoff, but it is un-

clear whether all (or even most) AI governance questions can even be answered using zero-

knowledge proofs, and the computational burden of existing approaches is enormous.253

While zero-knowledge proofs may be an ideal solution to verification in some senses, they

remain impractical to apply at scale as of this writing.254

249 Aarne, Fist, and Withers, ‘Secure, Governable Chips: Using On-Chip Mechanisms to Manage National Secu-
rity Risks from AI & Advanced Computing’.

250 ‘When Data Sharing Is a Problem, PySyft 0.9 Is the Solution’, OpenMined Blog, 6 August 2024, https://bl
og.openmined.org/announcing-pysyft-09/; Andrew Trask and Irina Bejan, ‘Privacy, Security, and Innovation
– Friends Not Foes’ (Center for Security and Emerging Technology), accessed 24 January 2025, https://cset.g
eorgetown.edu/event/privacy-security-and-innovation-friends-not-foes/.

251 For more on the “Who watches the watchers?” problem, see Appendix F.
252 It should also be noted that confidential computing is only strictly required for the privacy-preserving ver-

ification facility. The mechanisms outlined in this report can be accomplished without confidential computing
capabilities in the AI development and deployment infrastructure.

253 Sanjam Garg et al., ‘Experimenting with Zero-Knowledge Proofs of Training’, in Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security (CCS ’23: ACM SIGSAC Conference on
Computer and Communications Security, Copenhagen Denmark: ACM, 2023), 1880–94, https://doi.org/
10.1145/3576915.3623202; Haochen Sun, Jason Li, and Hongyang Zhang, ‘zkLLM: Zero Knowledge Proofs
for Large Language Models’ (arXiv, 24 April 2024), https://doi.org/10.48550/arXiv.2404.16109; Tobin
South et al., ‘Verifiable Evaluations of Machine Learning Models Using zkSNARKs’ (arXiv, 22 May 2024), https:
//doi.org/10.48550/arXiv.2402.02675; Suppakit Waiwitlikhit et al., ‘Trustless Audits without Revealing Data
or Models’ (arXiv, 6 April 2024), https://doi.org/10.48550/arXiv.2404.04500.

254 If progress on zero-knowledge proofs is dramatic, they might rapidly become the most practical approach
for verifying many AI-related questions, thus supplanting many of the conclusions of this report.
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Coming back to the topic of confidential computing for the privacy-preserving evaluation of

digital objects, there are five non-trivial political and technical challenges that must be nav-

igated. First, the location of new verification-specialized data centers could be a politically

salient issue, potentially requiring a nuanced and multi-pronged solution (see Section 3.6

below). Second, algorithm code will also need to be verified, ideally in a way that is fully

automated, since problematic algorithm code could allow for substantial circumventions of

regulations (see Appendix E). Third, suites of evaluations need to be developed to address

the multifaceted problems inherent in the assessment of digital objects such as model inputs

(data, hyperparameters, and algorithms), model training transcripts,255 models themselves,

inference plans and so on (see Appendix G). This ecosystem is young and rapidly developing,

but it must develop enormously if states are to depend on it for high-stakes deals.256 Fourth,

cyber attacks on the confidential computing stack might be possible, and this possibility de-

serves further scrutiny.

Fifth, physical access to the hardware might allow a state to violate confidential computing, in-

cluding by potentially exfiltrating sensitive data or adding code that changes the behavior of

the system.257 One way to guard against many of these attacks is by monitoring the hardware

stacks, an issue explored in Sections 2.5.2.1 and 2.5.2.3. More speculatively, proposals exist for

tamper-resistant enclosures that are robust enough that they could be employed without ex-

ternal hardware monitoring. One specific approach, described in Petrie et al. 2024, combines

computational and tamper-resistant elements into “Flexible Hardware-Enabled Guarantee”

(flexHEG) mechanisms.258 While the specific governance and verification recipes described

there differ substantially from those in this report, their work provided multiple dimensions

of inspiration.

Finally, there is the question of whether humans should also be in the loop or potentially

serve as a point of escalation when automated evaluations indicate that something is amiss.

Human-directed assessment of digital objects might be useful for a number of reasons. For

example, human assessors might 1) act as a flexible stop-gap while automated evaluations

are still being developed, 2) serve as a final source of overall judgment that goes beyond the

narrow checks that (small) evaluation systems are capable of, 3) serve as a more serious “red

team” of the assessment results as informed by the context, and 4) serve as an escalation

process when automated evaluations indicate that something is amiss or the Verifier raises

a challenge about a particular digital object. This kind of human involvement in the verifi-

cation of sensitive digital assets is not without precedent. Presently, technology providers

255 Shavit, ‘What Does It Take to Catch a Chinchilla?’; Choi, Shavit, and Duvenaud, ‘Tools for Verifying Neural
Models’ Training Data’.

256 ‘Evals’, 19 May 2023, https://github.com/openai/evals; ‘METR: Model Evaluation and Threat Research’,
accessed 30 September 2024, https://metr.org/.

257 Kulp et al., ‘Hardware-Enabled Governance Mechanisms’.
258 Petrie et al., ‘ Interim Report:  Mechanisms for Flexible  Hardware-Enabled Guarantees ’.
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such as Microsoft and Huawei go to significant lengths to provide governments with access

to sensitive information such as source code via tightly controlled physical environments.259

However, the advantages of having humans in the loop are matched by very significant poten-

tial downsides. Most crucially, while it is possible to verifiably wipe the memory of a digital

computer to preserve privacy, no such operation can be done with human assessors. There-

fore, sensitive information seen by the human assessor may be revealed later to the Verifier

or other actors, thus raising the Prover’s concerns about the security of their information.

Moreover, at least for the largest digital objects, such as training data sets or completed large

models (which are gigabytes to petabytes in size), there is a real question about whether a

human assessor can achieve insights that are not already provided by their tools. However,

for assessments of much smaller objects, such as inference plans (see Section 4.5.2.2.1), hu-

mans may indeed have the cognitive capacity to meaningfully engage with the content and

provide non-trivial insights into its logic.

How might humans be included in the loop in a relatively privacy-preserving way? Here

is one potential approach. The Prover and Verifier set up a neutrally located data center

for which they both verify and monitor the hardware, personnel, and physical security (see

Section 3.6.1). For scenarios requiring extreme security, but lacking a need for rapid ver-

ification, this facility could also be air-gapped.260 Within that facility, privacy-preserving

evaluations could be run against digital objects, as described above. Additionally, human

assessors could be provided access to specific parts of the assessed data or to the outputs of

aggregate measures of the data. The access granted would need to be agreed to by the Prover

via a confidential computing voting system. After conducting their evaluations as agreed by

the Prover and Verifier, the assessor would be able to reliably transmit one bit per judgment

to the Verifier and Prover.261 In so doing, these assessors in their highly controlled context

would perform the trusted-third-party equivalent of a zero-knowledge proof—wherein the

Verifier would learn only whether the provided information was in compliance.

Following their assessment work, human assessors might need to be subject to strict physi-

cal and digital controls depending on the sensitivity of the information they were provided

access to. Moderate intensity examples of such controls might include a ban on working for

any state or key AI firms for a certain number of years. Extreme intensity examples might

include living and working in air-gapped locations (verified by the Prover) for years. The

259 ‘Transparency Centers’, Microsoft, 29 October 2024, https://learn.microsoft.com/en-us/security/e
ngineering/contenttransparencycenters; ‘Huawei Cyber Security Evaluation Centre (HCSEC) Oversight
Board Annual Report 2021’ (Huawei Cyber Security Evaluation Centre Oversight Board, 20 July 2021), https:
//assets.publishing.service.gov.uk/media/60f6b6be8fa8f50c7a1b9ffd/2021_HCSEC_OB_REPORT_FIN
AL__1_.pdf.

260 Air gapping does introduce some questions about how mutual monitoring of the facility would work, since
information is needed in order to monitor. If monitoring systems themselves must be air gapped, this raises
the question of how these monitoring systems can in turn be monitored to ensure that neither party has circum-
vented them. Data centers which are wired can directly address these challenges by designating which kinds of
outbound information flow are permitted and carefully controlling them (presuming that one or both actors
might try to subvert them).

261 Precisely how this bit would be transferred is a question for future work. Redundant mechanisms might be
advisable, including even some extremely low-tech options like flags which can be visually monitored from far
outside the facility.
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extreme end of this spectrum appears unworkable in most potential scenarios, but might be

a contingency reserved for high-stakes scenarios which cannot be resolved in any other way.

If the Verifier is challenging the Prover about their compliance in a specific respect, but no

available privacy-preserving evaluation is capable of providing the assurance needed, then

one or more human assessors could be called in to provide the needed transparency while

also protecting the security of the Prover. The substantial discomfort they might endure by

being segregated from most of society for a time might be a price they and their state are

willing to pay in order to avoid a cascading end to an important governance agreement.262

Regardless of whether humans are in the loop or not, this scheme allows the Prover to

control what they reveal to the Verifier’s agents (automated or human) and to the Verifier

themselves—thus preserving the Prover’s security. Equally, the Verifier is able to make judg-

ments about the risk they perceive from the digital objects being assessed even if they cannot

directly see any of the object’s details, thus allowing them to achieve sufficient transparency

to know whether the Prover’s declarations with regards to these objects are correct and com-

plete. If the Prover attempts to hide or exclude some of the data, the Verifier has many tools

for noticing. If the Verifier attempts to exfiltrate secrets via their evaluations processes, the

Prover can defect such efforts.263 While it should be expected that states experience some

degree of information leakage via other channels such as state intelligence agencies or open

source intelligence, the verification mechanism described here has the potential to be very

robust against accidental or inadvertent revelation of sensitive information.

3.6 Location and physical control of crucial hardware

The physical locations of key parts of the verification apparatus can have political ramifi-

cations. States may trust hardware located in their own territory far more than hardware

located elsewhere. Furthermore, as they consider any potential agreement, states will also

consider what happens if one of the parties chooses to exit that agreement, which could allow

hardware to fall into the hands of the hosting state.

Regardless of where hardware is located, it could in theory be placed under local control

of any shape. For example, embassies are typically physically defended by the states they

belong to, not the states in which they are embedded. Such local control is possible for hard-

ware crucial to verification, but there are important challenges. First, the host state certainly

retains the ability to seize that location by force if needed. All verification schemes must

assume that such an exit from the agreement is possible even if it is deemed unlikely. Sec-

ond, locating a facility within a host state can give that host state both special access to that

facility and (consequently) special reassurances that it is not being used against their wishes.

262 One way to slightly reduce the burden of this approach would be to have assessors look at high-sensitivity
information early in their tenure as an assessor, and then low-stakes information afterwards. This would allow
them to be productively engaged in important work while they are under travel limitations.

263 Recall that code is mutually inspected before running. Portions of the code and data that are hidden via
confidential computing techniques can themselves be subject to evaluations (and perhaps even an escalation to a
human assessor) by the counterparty—thus making it much more difficult for nefarious code to reach its target.
Air gapped facilities are even more robust against this kind of attack.
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Even if local control is maintained, the host state would be able to limit which equipment

and personnel can access the site, and otherwise monitor signals that emerge from that facil-

ity including Internet exchanges. Having a facility within their own territory provides that

state with additional reassurance that their data is not being stolen or the integrity of their

computations compromised without their knowledge. Equally, however, the counterparty

would perceive the same problem in reverse, as their sensitive data would be at greater risk

of theft and their computations at greater risk of being manipulated. These concerns are

not necessarily equal in gravity, as for example when a Prover attempts to demonstrate that

their highly sensitive (e.g., military) model is compliant with relatively generic regulations.

However, both concerns can be intense, as in the case where a Prover is proving their model

compliant while the Verifier is using a variety of costly and sensitive evaluations to determine

the model’s compliance (see also Appendix C.6).

Addressing challenges like these will require political nuance beyond the scope of this re-

port. Nonetheless, one broadly defined approach will be described in some detail below: the

neutral mutually verified data center.

3.6.1 Neutral mutually verified data center

A neutral mutually verified data center—a neutral data center—is a data center that is under

neutral institutional control (e.g., a third-party state or an international institution) and which

is verified and monitored by both the Prover and Verifier (see Section 2.5.2). This section

briefly explores the ways in which such a data center could be physically controlled, the

purposes for which it might be used, and the overall feasibility of this approach.

A neutral data center is presumed to be under mutual control as well as under mutual veri-

fication. The Prover and Verifier can both exert physical control over the facility through a

combination of cooperation and layered security checks. In normal operation, nothing gets

in or out without them both agreeing. A second potential dimension of neutrality is the host

state, which could be a state that is not strongly aligned with either the Prover nor the state or

states that form the Verifier. Combining both mutual local control with a relatively neutral

host state is desirable for neutral data centers that perform sensitive verification operations.

In the context of this report, the primary purpose for a neutral data center would be veri-

fication operations. As noted in the previous section, the Prover and Verifier both seek to

protect their own sensitive data during verification operations and thus each would prefer

to have more control over the verification data center’s context. The additional certainty

that one party might gain from a location change to their own territory might be counter-

balanced with an increased perception of risk for the other party. Both sides might also fear

a physical attack on the data center that could reveal some highly sensitive data—and thus

they might each reserve the right to unilaterally wipe or even destroy all memory-capable

computational devices in the facility (see Section 2.5.1). Given the extreme sensitivity of the

operations that would be undertaken by a verification facility, choosing its location might be
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a key part of the negotiations for a deal. From the vantage point of this analysis, it seems like

hosting verification facilities within a neutral state might be one of the best overall options.264

Neutral data centers might also be employed for much more ambitious computational work-

loads such as AI development or inference. There are at least four salient advantages of

pooling large amounts of computational resources into neutral data centers: First, since ver-

ification can be run on adjacent hardware within the same data center, digital objects never

need to leave the data center in order to be verified—thus reducing the complexity of the

overall system as well as reducing the cyber attack surface. Second, neutral data centers are

likely to be somewhat more trustworthy for the Verifier compared with Prover-run data cen-

ters, even if the Prover tries quite hard to demonstrate their compliance with their own data

centers. Third, larger neutral data centers likely mean fewer total data centers will need to be

monitored and controlled, thus reducing the overall cost of the verification system. Fourth,

neutral data centers that would be placed at risk if the agreement ended are also a credible

commitment mechanism for the Prover. By placing some of their compute in a neutral data

center, they can make it infeasible for them to exit the agreement while retaining all of their

compute. Therefore, exiting the agreement will come with additional costs. As the politics of

AI governance evolve, it might be politically advantageous for participating states to gradu-

ally (and in lockstep) increase the amount of their compute that is located in neutral territory

so that they can iteratively reassure each other about their commitments while also making

the agreement more robust over time.

Construction of these kinds of facilities could plausibly be started immediately.265 As of

this writing, the primary technical barriers to building such a facility are security issues with

no publicly-known robust solutions.266 Mutual verification of such a facility would make

these problems more difficult. Neither of these challenges should be underestimated and

neither should be presumed to be impossible. Given the specialized nature of the narrow

verification-only neutral data centers described above, it is entirely possible that the facility

could be largely (or fully) air-gapped along with all of the tools and personnel employed to

continuously verify its integrity. Neutral data centers play a crucial role in several of the

verification approaches laid out in this report. For this reason, their development (or the

potential discovery of their infeasibility) is a major crux for the future of AI verification.

264 It should be noted that other than the security concerns regarding the information being processed in the
neutral data center, there is no reason to believe that the neutral data center provides significant diplomatic
or military power to the host state. The verification schemes outlined in this report hinge on the provision of
trustworthy neutral compute, but that neutral compute provision does not provide much—if any—power to
the host state. This concern would be mitigated even more fully if a set of several neutral facilities were set up
in different countries, thus disallowing any one of them from using the threat of shutdown as a way to extract
concessions from other actors who need this service for other reasons.

265 Repurposing an existing facility might also be possible, though verifying every inch of an existing building
might consume some of the benefits of avoiding having to build a new one.

266 Sella Nevo et al., ‘Securing AI Model Weights: Preventing Theft and Misuse of Frontier Models’ (RAND
Corporation, 30 May 2024), https://www.rand.org/pubs/research_reports/RRA2849-1.html.

85

https://www.rand.org/pubs/research_reports/RRA2849-1.html


3.6.2 Licensing system locations

If licensing systems are chosen as one of the components of a verification regime, there are

also political dimensions to the technical options available.267 There are three major options

for licensing system locations: Prover-controlled, Verifier-controlled, and distributed. Each

has a set of technical and political factors shaping its desirability.

If a licensing system is controlled by the Prover and verified by the Verifier,268 the Prover

could exit the agreement while retaining full control of their hardware. As noted above for

neutral data centers, being able to exit the agreement costlessly might be politically desirable

for some reasons, but it also means that any agreement of that kind is less robust to shocks

or changes unless other enforcement provisions are made. Note that it might be possible to

obfuscate the location of the licensing system or systems to allow the Prover some assurance

that such systems cannot be targeted with physical attacks.269 Overall, this approach places

a lot of power in the Prover’s hands, but can still allow the Verifier to be confident that the

Prover is abiding by the agreement.

Verifier-controlled licensing systems have very different implied politics. If the Prover exits

the agreement, they will not be able to use the licensing system to enable their hardware.

Depending on the implementation of the licensing systems, the Prover’s hardware might

be extremely difficult for them to re-enable in this scenario.270 Verifier-controlled licensing

systems thus might raise the cost of exiting the agreement for the Prover. Equally, however,

it does imply that the Verifier might have some arbitrary political control over the Prover’s

ability to use some of their own hardware. This could be useful as a credible commitment,

especially if conducted mutually, but it does look like a vulnerability at first glance, making

the politics of this scheme more challenging. Mutual vulnerability is a centerpiece of mu-

tual deterrence in nuclear strategy, so it is plausible that something similar may be done

for licensing. In some ways, licensing locations can mirror the politics of large neutral data

centers located outside of a state’s territory (see Section 3.6.1).

Distributed licensing systems can employ cryptographic techniques such as secure multi-

party communication or secret sharing271 to create a licensing system of any desired political

267 This section uses the term licensing to refer to hardware licensing as described in Section 2.2.4.5.
268 This scheme presumes that the Verifier has credible information about the licensing system such that they

are robustly sure that they are seeing every license issued. This could for example use a digital perimeter (see
Section 2.5.2.4). All of these licensing approaches also require that the Verifier is sure that the target hardware in
question cannot operate secretly without a license

269 See Section 2.5.4.2.
270 Simple license-driven locks on pod or rack-level enclosures might be easy to retool into other configurations.

On-chip licensing schemes might be extremely difficult to circumvent depending on their design and maturity.
See Aarne, Fist, and Withers (2024).

271 Yehuda Lindell, ‘Secure Multiparty Computation’, Communications of the ACM 64, no. 1 ( January 2021):
86–96, https://doi.org/10.1145/3387108; Amos Beimel, ‘Secret-Sharing Schemes: A Survey’, in Coding
and Cryptology, ed. Yeow Meng Chee et al., vol. 6639, Lecture Notes in Computer Science (Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011), 11–46, https://doi.org/10.1007/978-3-642-20901-7_2.
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shape.272 License-granting powers can be spread among a number of different parties, who

must then work together to provide licenses. According to some sort of voting rules, these

parties can choose together whether to grant a license—and presumably no single party can

provide a license alone. Depending on the protocol, all stakeholders might have a credible

reassurance that no valid licenses have been generated without their active participation (e.g.,

consensus). A consensus algorithm removes the sensitivity associated with a single location

or license provider, since all stakeholders must have signed in order for a license to be sent.

The challenge with a consensus algorithm, however, is that all key holders are implicitly

veto holders, and every location that they hold their keys becomes a security liability for

the Prover.273 Therefore, non-consensus algorithms must also be considered seriously.274

Other than the shift from physical to cryptographic licensing schemes and the implied pol-

itics therein, the politics of a distributed licensing system resemble those of the Verifier-

controlled licensing schemes described above, with the Prover potentially facing significant

costs for exiting an agreement. The key advantages of a distributed licensing approach are

its up-front flexibility, its lack of need for a single centralized licensing system which could

be a security liability, and its potential for change as political challenges evolve.

3.7 What kindof institution should oversee verification?

3.7.1 Direct vs indirect verification

Various institutional frameworks are possible for AI governance and verification. One dimen-

sion of note is whether the verification is done directly or indirectly via other institutions. Di-

rect verification is when a state or a centralized international institution directly verifies the

detailed behavior of another state.275 This can be contrasted with indirect verification, where

an additional layer of regulatory apparatus is allowed to serve as an intermediary. Typically,

such intermediary institutions exist at the domestic level.276 For example, a jurisdictional

certification approach to AI governance would enable an international organization to judge

whether (and how completely) states are embedding international AI governance standards

into domestic law—an approach that has analogues in the international governance of civil-

272 If one or more mutually controlled locations are still needed, keys can also be managed via cyber-physical
processes such as key-control ceremonies. ‘The DNSSEC Root Signing Ceremony’, CloudFlare, accessed 2 Octo-
ber 2024, https://www.cloudflare.com/dns/dnssec/root-signing-ceremony/.

273 If there are five keys stored in five locations, all of which are needed for the Prover to receive licenses, then
the physical destruction of any of them would disallow all future licenses under a consensus algorithm.

274 This report will not explore this challenge further, but will note in passing that cryptographic schemes are
widely available for managing distributed keys and voting rights in nuanced ways.

275 Even though international institutions are created by states, they are still capable of direct verification. For
example, if an international verification organization had the mandate, personnel, and authority to directly in-
spect activities for compliance and continuously report on that compliance, it would certainly be conducting
“direct” verification according to the definition provided here since it would have immediate access to the per-
sonnel, equipment, and activities needed to assess compliance. By contrast, any institution which is assessing
compliance through proxies such as domestic regulatory agencies is indirect.

276 One salient example of such an institutional type is the currently ongoing creation of national AI Safety
Institutes in different countries.
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ian aviation, maritime traffic, and finance.277 Alternatively, a third party state can be brought

in to perform the analysis. The peer certification approach allows states to send groups

of experts to inspect each other’s compliance with the agreement.278 Direct verification is

likely to be more desirable to Verifiers because it provides more reliable information. Corre-

spondingly, Provers are likely to prefer indirect verification, which can allow them to employ

information barriers to protect their most prized secrets.279 While the question of direct vs

indirect verification will certainly be important for future discussions about AI governance

institutions, it will not be explored further here. The text in the remainder of this report im-

plies that verification will be undertaken directly by a Verifier, but this should not be taken

as a stance on this political question.

3.7.2 Is an international institution desirable?

Depending on the agreement, an international institution might be desirable for managing

processes and pooling resources, but it may also not be needed. Institutions are particularly

valuable when making agreements with complicated cooperative protocols among three or

more states. A related, verification-like challenge is that of making international institutions

legible enough to be trusted by their member states—but not too leaky to accomplish sen-

sitive tasks.280 This problem overlaps with the goals of this report, but compared with AI

verification, the design and management of institutions is a well-established field and will

therefore not be discussed further here. Overall, this report does not take a stance on whether

an international institution is desirable for implementing the agreements described below.

277 Trager et al., ‘International Governance of Civilian AI’.
278 One example of this approach is the mutual evaluations system within the Financial Action Task Force. ‘Mu-

tual Evaluations’, Financial Action Task Force, accessed 13 July 2023, https://www.fatf-gafi.org/en/topic
s/mutual-evaluations.html.

279 For example, see Section ‘Mitigating Proliferation Dangers from Governance Processes’ in Trager et al., ‘In-
ternational Governance of Civilian AI’.

280 This is a perennial debate regarding international organizations in sensitive domains, such as the IAEA.
Robert L. Brown and Jeffrey M. Kaplow, ‘Talking Peace, Making Weapons: IAEA Technical Cooperation and
Nuclear Proliferation’, Journal of Conflict Resolution 58, no. 3 (1 April 2014): 402–28, https://doi.org/10
.1177/0022002713509052; Nicholas L. Miller, ‘Why Nuclear Energy Programs Rarely Lead to Proliferation’,
International Security 42, no. 2 (1 November 2017): 40–77, https://doi.org/10.1162/ISEC_a_00293; Rebecca
Davis Gibbons, ‘Supply to Deny: The Benefits of Nuclear Assistance for Nuclear Nonproliferation’, Journal of
Global Security Studies 5, no. 2 (1 April 2020): 282–98, https://doi.org/10.1093/jogss/ogz059.
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4 International AI governance agreements

and their verification requirements

This section provides an overview of possible international agreements relating to AI and

their verification requirements.

The specific agreements within each category are deliberately kept artificially narrow for

the purpose of examining the verification requirement of each component. These should

be regarded as ideal types, not full proposals for real-world agreements. Real agreements

would likely combine multiple approaches and perhaps even agreement types or categories.

In this sense, this exercise should be seen as mapping out the verification requirements for

some of the different components which may be mixed together into future agreements.

For some of these agreement types, it is possible to imagine variants that include some states

but not others. For example, agreements with fewer states would be regional or “minilat-

eral” while agreements with many states may be reasonably described as multilateral or even

global. For non-global agreements, verification protocols may have to take into account the

existence of non-participating states, since those states may have capabilities that are relevant

to the verification being examined. In contrast, a global agreement may allow us to assume

that actors with a certain level of capabilities do not exist outside of the agreement.

Due to limited space, only a very small number of verification mechanisms will be listed in

each section below. These were chosen because they appear to be a compelling combination

of a) effective, b) technologically mature, and c) politically viable. If increased confidence

in compliance is desired, the methods described in the following subsections can often be

combined or implemented in parallel (see Section 3.3 and Appendix C.5).

4.1 Transfer knowledge

For commercial, economic, or political reasons, states might seek to transfer knowledge in-

ternationally.281 In the domain of AI, knowledge transfers can be accompanied by concerns

about the proliferation of capabilities, security, intellectual property,282 and economic or

military competitiveness. The kinds of “knowledge” discussed here are non-trivial to verify

and non-public.283 Either the sending or the receiving state may want to verify knowledge

transfers. The receiving state might want to confirm that the information is authentic and

281 A related challenge is that of transferring physical resources. See Section 4.2.
282 Given the proprietary nature of many AI development processes, agreements must carefully outline intel-

lectual property (IP) protections. This can include defining the scope of shared knowledge—such as focusing
on non-proprietary techniques or general methods—ensuring commercially sensitive aspects are not exposed.
These protections give sending states the assurance that their IP rights are safeguarded while supporting mean-
ingful knowledge transfer.

283 See Section 1.1 for more on why this report focuses on certain kinds of agreements.
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Table 4.1: Agreements examined in this report.

Agreement family Agreement types Variants

Share research

Share knowledge of AI risks and oppor-
tunities

Share AI development knowledge

Transfer

knowledge

Share safety-enhancing technologies

Share AI-specialized chips

Share access to AI-specialized
computeTransfer development resources

Training programs for AI pro-
fessionals

Transfer completed models
Provide access to AI systems

Provide API access

Cash transfers

Deploy AI-enabled devices as
aid

Transfer

resources

Share benefits

Transfer AI-enabled devices

Pool resources toward an international
goal

Pool resources toward defensive AIs

Pool resources toward transformative
AI

Pool

resources

Pursue systemically risky AI only in a
singular project

Prepare for

emergencies

Computational emergency detection
and response

Regulate data center-based AI
development

Regulate AI development
Regulate fine-tuning and on-
line learning

Regulating data center infer-
ence

Regulate

Regulate AI deployment
Regulating sensitive mobile
AI-enabled devices
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Verifiability presuming  
five years of serious effort

Verifiability if implemented 
today

Example agreementAgreement family

Yes, with political 
limitations*

Yes, with political 
limitations*

Share knowledge of AI risksTransfer knowledge

Yes, with political 
limitations*

Yes, with political 
limitations*

Share AI-specialized chipsTransfer resources

YesYesPool resources toward 
international goal

Pool resources

MaybeNoComputational emergency 
detection and repsonse

Prepare for emergencies

YesNoRegulate data center 
computations

Regulate

LimitedVery limitedRegulate AI-enabled 
weapons

*The sending state must deem the risks of knowledge or resource misuse to be tolerable.

Figure 4.1: The families of international agreements examined in this report and their esti-
mated verifiability.

complete.284 By “authentic”, we mean true to the extent known by the sending institution and

produced or summarized via an agreed-upon process. By “complete”, we mean that no rel-

evant knowledge is being withheld in violation of the agreement. For its part, the sending

state might want to confirm that the information is protected appropriately by the receiving

state (i.e., not spread or resold beyond the rules of the agreement). The remainder of this

subsection will describe some examples of knowledge transfer agreements and then explore

the related verification challenges facing the sending and receiving states.

284 Related concepts in civilian nuclear verification are “correctness” and “completeness”. This report uses “au-
thenticity” instead of “correctness”, since some agreements may be over information that is not known to be
correct, but is produced via authentic processes. For the IAEA definitions, see Laura Rockwood, ‘IAEA Safe-
guards: Correctness and Completeness of States’ Safeguards Declarations’, in Nuclear Law: The Global Debate
(The Hague: T.M.C. Asser Press, 2022), 205–22, https://doi.org/10.1007/978-94-6265-495-2_10.
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4.1.1 Examples

4.1.1.1 Share research

Particular kinds of AI-related research findings could be verifiably shared among relevant in-

stitutions such as AI Safety Institutes or international regulators. For example, an agreement

might stipulate that all research of a particular category be shared.285 Verification of this kind

may be desirable for an international regulatory institution or for multilateral collaborations

that include domestic AI regulators or research efforts.286

4.1.1.2 Share knowledge of AI risks and opportunities

Industry-wide data on AI risks and opportunities could be verifiably sent to states or to an

international organization tasked with summarizing the industry and the underlying sci-

ence.287 For example, states might commit to sharing information on newly discovered

AI-related hazards. The analogy of the World Health Organization’s International Health

Regulations indicates that such agreements are desirable and possible, but that same anal-

ogy is also a cautionary tale, as states have failed to consistently report information during

major health incidents.288

4.1.1.3 Share AI development knowledge

States verifiably share knowledge about how to develop AI, with the goal of enabling better

or faster AI development.289 While this is certainly related to the research-sharing described

above, this domain also includes non-research knowledge such as the technical and practical

expertise needed to effectively develop and deploy AI systems.290

4.1.1.4 Share safety-enhancing technologies

States may choose to systematically share certain kinds of safety-enhancing technologies

with each other. One historical example of this was the United States choosing to share nu-

285 As discussed further in the subsections below, demonstrating completeness in such an agreement might be
extremely difficult. While it is comparatively easy to send and verify research, it might be impossible to know
whether other (secret and undeclared) research had taken place.

286 Lewis Ho et al., ‘International Institutions for Advanced AI’ (arXiv, 11 July 2023), http://arxiv.org/abs/23
07.04699; Marta Ziosi et al., ‘AISIs’ Roles in Domestic and International Governance’, 2024.

287 Ho et al., ‘International Institutions for Advanced AI’; Hadrien Pouget et al., ‘The Future of International
Scientific Assessments of AI’s Risks’ (Oxford Martin AI Governance Initiative, August 2024).

288 Raphael Lencucha and Shashika Bandara, ‘Trust, Risk, and the Challenge of Information Sharing during a
Health Emergency’, Globalization and Health 17, no. 1 (18 February 2021): 21, https://doi.org/10.1186/s129
92-021-00673-9.

289 One analogy to this kind of effort is cyber capacity building, which seeks to augment the cybersecurity abil-
ities of other states. Andrea Calderaro and Anthony J. S. Craig, ‘Transnational Governance of Cybersecurity:
Policy Challenges and Global Inequalities in Cyber Capacity Building’, Third World Quarterly 41, no. 6 (2 June
2020): 917–38, https://doi.org/10.1080/01436597.2020.1729729.

290 Such knowledge transfer could also provide information about key infrastructure for AI development. In-
formation flows could include specific modalities such as confidential technical reports, infrastructure design
documents, and site visits.
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clear permissive action link technology with the Soviet Union, in an attempt to help them

centralize control of their nuclear weapons.291

4.1.2 Verify that knowledge shared is authentic and complete

If the sending state commits to sharing authentic and complete knowledge with the receiving

state, the receiving state faces the challenge of verifying these aspects of the knowledge.

4.1.2.1 Verifying information authenticity

There are at least four ways to verify information authenticity:

1. Verify directly: Test using replication or other computational checks (e.g., replicating

technical results or following proofs). This is robust for specific domains, but not ap-

plicable to all forms of knowledge. Some knowledge may also be too costly to verify

directly even if it can be done in theory.

2. Verify via access to key personnel: Sending states provide the research of interest by

providing access to personnel who can share knowledge about that research. This is

workable in low-stakes environments but very difficult to make credible in high-stakes

or secretive environments (see Section 2.1.2).

3. Verify via process and access: The process by which the knowledge is provided is cred-

ible. For example, verifiable claims might be made via access to specific digital infras-

tructures (see Section 2.4.1.2).

4. Verify via other methods: States may have other ways to verify the authenticity of

knowledge, including comparisons with the findings of their own state’s intelligence

services or comparisons with the knowledge of other trusted states.

Not all information can be verified in these ways. For example, when the U.S. was considering

sharing sensitive nuclear control technology with Pakistan (to help secure Pakistan’s arsenal),

the Pakistani government worried that the transferred technologies might allow the U.S. to

prevent them from using their own nuclear weapons—and no approach available at the time

was able to resolve these uncertainties.292

4.1.2.2 Verifying information completeness

To verify that information is complete, Verifiers must acquire evidence that nothing impor-

tant was withheld by the sending state. Depending on the domain, this could be an extremely

challenging goal and may even be impossible (see Section 1.5.2).

There are at least two general ways to accomplish this in practice:

291 Jeffrey Ding, ‘Keep Your Enemies Safer: Technical Cooperation and Transferring Nuclear Safety and Security
Technologies’, European Journal of International Relations, 27 April 2024, 13540661241246622, https://doi.or
g/10.1177/13540661241246622.

292 Jeffrey Ding, ‘Keep Your Enemies Safer’.
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1. The sending state provides evidence that they are providing all relevant information.

This might be accomplished by providing that all potential sources of this kind of infor-

mation are covered by the information transmission mechanism.293

2. The sending state might provide different kinds of parallel evidence that employ dif-

ferent approaches and data sources, thus allowing the receiving state to compare the

evidence. The presumption is that while the sending state might be able to easily ma-

nipulate one kind of information process, they might have difficulty manipulating many

such processes. See also Appendix C.5.

4.1.3 Verify that transferred knowledge is safeguarded

appropriately

Some agreements may require that the receiving state must protect the knowledge received

with verifiable controls on personnel, digital infrastructure, or AI infrastructure (see Sec-

tions 2.1.1, 2.4.1.1 and 2.5.2). These controls must address at least three problems:

1. They must ensure that the transferred knowledge is not re-transferred outside of the

bounds of the agreement without the original sender’s consent.

2. They must ensure that the transferred knowledge is not diverted to forbidden uses

within the receiving country. For example, the sending state might require that the

receiving state not use transferred resources for military investments.

3. They must ensure that the transferred knowledge remains satisfactorily protected

against theft by other actors.

4.2 Transfer resources

States may also seek to transfer resources other than knowledge across borders. Once again,

they may be motivated by commercial, economic, or political incentives. Reasons for re-

source transfers might fall anywhere on a spectrum from purely market-driven to purely po-

litically motivated. Non-commercial resource sharing agreements could be undertaken for a

variety of reasons.294 These arrangements can serve various purposes: supporting inclusive

economic growth, fostering technological self-determination in developing countries, and

advancing the political objectives of sending states (for example by strengthening strategic

partnerships or encouraging the adoption of international agreements).295

293 For example, all research of a given type is conducted in specific facilities by a limited number of
people—and a transmission infrastructure provides credible assurances that all of the relevant information is
being transmitted.

294 Claire Dennis et al., ‘Options and Motivations for International AI Benefit Sharing’ (Centre for the Gover-
nance of AI, 2025).

295 Several international agreements include resource-sharing mechanisms as a key component. For example,
Article IV of the Nuclear Non-Proliferation Treaty promotes nuclear cooperation for peaceful purposes, which
the International Atomic Energy Agency pursues through its Technical Cooperation Programme.
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There are two major verification challenges with resource sharing: 1) the verifiable transfer

of resources from the sending state to the receiving state and 2) the subsequent protection of

such resources to prevent processes such as proliferation, diversion, or resale. The following

subsections explore the verifiability of these agreements depending on the type of resource

transferred. We find that verifying secure transfer is far more intricate for some assets (e.g.,

pretrained models) than others (e.g., financial proceeds).

4.2.1 Transfer development resources

States may want to verifiably share with (or sell to) other states a portion of their AI develop-

ment capabilities. Such transactions would allow a broader group of states to construct their

own AI systems. The subsections below explore three different development resources that

could be transferred.

4.2.1.1 Share AI-specialized chips

An agreement could facilitate the transfer of some quantity of AI-specialized chips. In order

to assure the receiving state that the correct proportion of chips is being shared, and that they

have not been tampered with, the sharing agreement may require some controls on the chip

supply chain, perhaps also including use of a chip registry.296 The receiving state will have to

verifiably control the downstream uses of these chips to guard against resale or unapproved

transfers. Such controls would apply to data centers and potentially domestic regulators (see

Section 2.5.2.1).

4.2.1.2 Share access to AI-specialized compute

An agreement could facilitate remote (cloud-based) access to AI-specialized compute re-

sources. An agreement of this kind might be very desirable for many potential receiving

states, since AI-specialized data centers are somewhat rare and are heavily concentrated in

a few countries. Meanwhile, sending states might desire an agreement of this kind so that

they can economically benefit from exporting compute operations without losing physical

and legal control of the hardware.297

Such access might be provided via sender-domiciled cloud computing intermediary institu-

tions or via more direct access by receiver-employed institutions:

• Access via receiver-controlled intermediary institution: In this scenario, the sending

state allows agents of the receiving state to have direct access to some AI-specialized

compute, such as a data center or a portion of a data center. The receiving state might

be allowed to use the infrastructure under controlled conditions. To ensure mutual

security and compliance with the agreement, the sending state could implement ver-

296 See Sections 2.2.2.1 and 2.2.2.2.
297 For a related exploration of how some aspects of AI governance can be provided through cloud providers,

see Lennart Heim et al., ‘Governing Through The Cloud: The Intermediary Role Of Compute Providers In AI
Regulation’ (Oxford Martin AI Governance Initiative, March 2024).
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ifiable controls over the infrastructure in question (see Section 2.5.2). Meanwhile, the

recipient state would need to establish auditable systems to prevent the unauthorized

transfer or resale of access (see Section 2.4.1.1). Personnel controls may also be necessary

to ensure that only authorized institutions, such as government agencies or strategic in-

dustries, utilize this privileged compute access within the bounds of the agreement (see

Section 2.1.1). The sending state may also need to be able to verify that the compute is

being used in accordance with specific rules (see Section 4.5).

• Access via cloud services: The sending state provides access to its AI-specialized com-

pute resources via the Internet, thus allowing the recipient to engage in AI activities

without having their own on-premises hardware. The sending state could demonstrate

that the hardware is secure in ways that disallow them from stealing information or

downgrading the quality of computational resources provided (see Section 2.5.2). As

noted above, the sending state may need to verify compute use (see Section 4.5) and the

recipient may have to prove that they are appropriately protecting the resource.

In either case, the compute would still be located in the sending state, but it would be under

different local management in the two scenarios. Given that the compute is located in the

sending state, whether they are able to credibly assure receivers of ongoing access (i.e., that

they won’t be cut off for political reasons) is primarily a question of political signalling and

political commitment, and thus outside the scope of this report.

4.2.1.3 Training programs for AI professionals

An agreement enables the training of AI professionals—including via exchanges. Receiv-

ing states would need to ensure that the sensitive knowledge received by their professionals

is appropriately protected via verifiable controls on personnel and potentially also digital

infrastructure (see Sections 2.1.1 and 2.4.1.1). This is related to the previous section on verifi-

ably transferring knowledge (see Section 4.1), but refers to activities that go beyond merely

transmitting and verifying data. Consider that training programs are somewhat likely to in-

volve on-site activities within one or both states, with appropriate security controls in place.

States may also confirm the authenticity of training in somewhat different ways, since the

acquisition of skill might be somewhat more difficult to confirm than the authenticity and

completeness of data as discussed above.

4.2.2 Provide access to AI systems

Whether or not development resources are shared, it is also possible to share access to AI, since

access does not require ownership. Two kinds of access are explored: transfers of completed

models and remote access via API.

4.2.2.1 Transfer completed models

An AI model can be created in one state and then transferred securely to another state. The

sending state may have to provide verifiable information about the training process as well as
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potentially the fine-tuning processes undertaken to create the model (see Section 4.5.1). The

receiving state would have to protect the model with verifiable controls on personnel, data

centers, and institutional digital infrastructure—all of which might be facilitated through

domestic regulation if private actors play a role in any of these processes (see Sections 2.1.1,

2.4.1.1 and 2.5.2).

4.2.2.2 Provide API access

Receiving states could be allowed to use particular APIs provided by a sending state. APIs (ap-

plication programming interfaces) are Internet-enabled exchanges of information between

a client and a server, all of which are encrypted in transit. APIs allow users to benefit from

both models and AI-specialized compute that are physically located in other states. Such

an access-sharing approach may be desirable, because the energy, engineering, and institu-

tional requirements for AI-specialized data centers make it infeasible for most states to build

them within the next several years, even if these facilities will only be used for inference and

not the more expensive development steps.298

Guaranteeing reliable API access over time presents distinct political challenges, as the send-

ing state retains full physical and legal control over the data centers and infrastructure. As

noted above in Section 4.2.1.2, sending states may have to make significant political commit-

ments in order for continuity of access to be regarded as credible. Receiving states might

consider it dangerous to build valuable public or private infrastructures atop API access pro-

vided by a sending state which has not made serious commitments to ensuring that such

access is ongoing.

A more technical question is that of verifying the integrity of the API. To verify that the API’s

behavior (e.g., model, performance, security) is being provided as per the agreement, the

sending state can provide parallel streams of verifiable evidence from their hardware which

can demonstrate that the hardware is in a compliant configuration, has not been altered by

the sender’s agents, and that no data is being copied without the receiving state’s express

permission (see Section 2.5.2 and its subsections, as well as Section 4.5 for verifiable rules

about AI development and inference).

For their part, the receiving state may have to provide credible information about how they

are ensuring that access to the API is not being re-sold or misused. This could include verifi-

cation of personnel controls, domestic regulation, digital infrastructure, and data centers.299

298 The politics of AI-specialized compute is also increasingly contested, thus making its acquisition more diffi-
cult for many states.

299 Note that smaller or non-AI-specialized data centers can exist in the receiving state as part of more traditional
digital infrastructure for a state.
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4.2.3 Share benefits

States may also choose to verifiably share some of the benefits of their AI systems—including

cash transfers or the productive use of AI-enabled devices (see Section 2.2.5).300

4.2.3.1 Cash transfers

An agreement could include monetary transfers between states. The sending state might

agree to transfer money based on the financial performance of certain entities, which would

require some verification of financial data.301 The receiving state may not have to provide

any verifiable assurances in this approach.

4.2.3.2 Deploy AI-enabled devices as aid

AI-enabled systems can be used to provide economic help to other states without transfer-

ring ownership of those systems. For example, future AI-enabled systems could be used for

infrastructure development. Receiving states might require verifiable information about the

devices themselves, and if they receive such information they may have to verifiably protect

it via controls on personnel and digital infrastructure (see Sections 2.1.1, 2.4.1.1 and 4.5.2.3.6).

4.2.3.3 Transfer AI-enabled devices

A sending state can also transfer AI-enabled devices to a receiving state, with the receiving

state guaranteeing that those devices will not be passed onwards to any other state.302 Veri-

fication of such an agreement would be very similar to the agreement described above. The

only major addition is that domestic regulation in the receiving state would have to verifi-

ably demonstrate that they will retain ongoing control of the AI-enabled devices in a way

that makes their redirection or theft unlikely.303

4.3 Pool resources

States may also choose to pool their resources into a cooperative project that is overseen by

a new third-party institution. They may do this in pursuit of a wide variety of international

goals, including contributing to the Sustainable Development Goals, building “defensive” AIs

intended to protect humanity from AI misuse or accidents in the future,304 and pursuing po-

tentially dangerous research in a cooperative setting with international oversight. Pooling

resources can allow costs to be shared among many states. Furthermore, pooling resources

300 For a broader take on the concept of benefit sharing which overlaps with other agreement categories in
this report, see Lennart Heim, ‘AI Benefit Sharing Options’, Lennart Heim (blog), 28 September 2024, https:
//blog.heim.xyz/ai-benefit-sharing-options/.

301 Verification of financial data is not examined in this report.
302 One precedent for this kind of agreement is re-export limitations for weapons.
303 This might imply a form of indirect rather than direct verification. See Section 3.7.1.
304 Yoshua Bengio, ‘AI and Catastrophic Risk’, Journal of Democracy, October 2023, https://www.journalofd

emocracy.org/articles/ai-and-catastrophic-risk/.
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can be politically useful as a signal of intent as well as a commitment mechanism.305 The

rest of this subsection describes some examples of this category of agreement before unpack-

ing three components: internal regulation of the project, resource provision, and guardrails

against resource redirection.

4.3.1 Examples

4.3.1.1 Pool resources toward an international goal

States can verifiably pool a portion of their resources toward an international goal such as

achieving the Sustainable Development Goals. This kind of agreement overlaps heavily with

the agreement types described above.

4.3.1.2 Pool resources toward defensive AIs

States can verifiably pool resources toward the research, development, and deployment of

“defensive” AIs which can help humanity mitigate the danger of hypothetical uncontrolled

or “rogue” AIs.306 This proposal bears significant similarity, both in overall structure and its

verification requirements, to proposals discussed below (see Sections 4.3.1.3 and 4.3.1.4). Pre-

suming that defensive AIs may eventually be used in sensitive contexts such as cyberdefense,

verifying the capabilities and activities of the institution(s) building them will be crucial. Po-

tentially, many domains of verification will be relevant, with a particular emphasis on the

verifiable control of the institution’s personnel, digital infrastructure, data centers, training

capabilities, and fine-tuning capabilities (see Sections 2.1.1, 2.4.1.1, 2.5.2 and 4.5).

4.3.1.3 Pool resources toward transformative AI

Two or more states could pool their resources with the intent of creating transformative

AI—AI capable of transforming human society on the scale of the agricultural or industrial

revolutions.307 This project could therefore be one of the largest AI projects and it would

be aimed at having major and broad effects on the world—as opposed to the more narrowly

scoped projects aimed at specific international goals or creating defensive AIs.308 While this

proposal is not explored in greater depth here, the following sections explore categories of

305 Resources placed into a pooled effort are resources that may be difficult to repurpose back to unilateral efforts.
This can also be made part of a deliberate strategy to create increasingly robust agreements (see Section 3.6).
Pooling of resources can make states less threatening to each other and also make verification of claims related
to the state’s remaining resources easier.

306 Yoshua Bengio, ‘AI and Catastrophic Risk’, Journal of Democracy, October 2023, https://www.journalofd
emocracy.org/articles/ai-and-catastrophic-risk/.

307 Holden Karnofsky, ‘Some Background on Our Views Regarding Advanced Artificial Intelligence’, Open Phi-
lanthropy Project (Blog), Open Philanthropy Project, 2016, https://www.openphilanthropy.org/research/
some-background-on-our-views-regarding-advanced-artificial-intelligence/.

308 The governance issues of such a project go far beyond the scope of this report, since there is a real potential for
such a project to dramatically affect humanity’s future. It is worth noting however that the governance structures
built for managing such a project internally might be very similar to the internal governance requirements of
the singular project approach described below. In both approaches, tremendous emphasis must be placed on
reliable governance as well as safe development and deployment.
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verification that would be needed for such an agreement, including for both AI development

and AI deployment (see Section 4.3.1.4 and Section 4.5).

4.3.1.4 Pursue systemically risky AI only in a singular project

States verifiably pursue systemically risky AI—AI with the potential of significantly affecting

humanity as a whole (see Appendix H)—only in a singular cooperative project. States may

have many reasons for building such an agreement, including avoiding war and minimizing

the risk of the loss of human control (see Section 1.3). Presumably, the aim of a central-

ized project would be to avoid a costly race toward extremely powerful AI among states309

while also increasing the safety, transparency, and political control of the development of

powerful AI systems. Such an agreement would require the pooling of AI resources and an

associated ban on this category of AI development by any other institution. Such an agree-

ment would bear a resemblance to the “Pool resources toward transformative AI” concept

described above, though coupled with a broad effort to regulate AI development widely to

ensure that this project has no significant competitors (see Section 4.5 and Section 4.5.1.2.1 in

particular). This proposal similarly has many political details and ramifications that go far

beyond the scope of this report.

4.3.2 Components

Three components of these kinds of agreements relate to AI verification: regulating how

AI is created or used within the project, how resources are provided to the project, and

how resources are controlled to ensure that they are used for appropriate purposes. Reg-

ulation is discussed extensively below (Section 4.5). Resources can be provided in verifiable

ways, including funding, chips (see Section 4.2.1.1), computing infrastructure access (see Sec-

tion 4.2.1.2), API access (see Section 4.2.2.2) and personnel (see Section 2.1). Verification of the

appropriate usage of those resources would require controls on information and resources

as described earlier (see Sections 4.1 and 4.2).

4.4 Prepare for emergencies

Preparing for AI-related emergencies is too broad a topic to fully explore in this report.

Given that AI might be used in any domain by any actor, there are a vast array of potential

scenarios that a state might deem an emergency. In light of this breadth, this report exam-

ines the verifiability of the computational side of emergency response. While an AI-related

emergency may have many effects on the world, fundamentally, AI depends on computa-

tions. Therefore, both the detection of and response to an AI emergency may be centered

on AI computations and the hardware that enables them.

309 Domains of AI that are not systemically dangerous might continue to be sites for intense competition.
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4.4.1 Computational emergency detection and response

Preparing for the computational side of potential AI emergencies requires building verifi-

able systems which are capable of: a) detecting dangerous AI systems and AI-related compu-

tational events, b) alerting states and other stakeholders about the danger, and c) responding

to the emergency.310

To detect dangerous AI systems or computational events, detection systems must have ex-

tensive access to the computations taking place. Such systems are highly analogous to the

computational verification systems discussed below (Section 4.5), and that section should be

consulted for details. Overall, verification of such systems may be politically possible de-

pending on the sensitivity of the information that would be transmitted. As of this writing,

detailed verification appears unworkable, but there is significant potential for highly verifi-

able systems within a few years.

Alerting states and other stakeholders about AI-related dangers requires that credible mech-

anisms exist to transmit crucial information to those stakeholders at the appropriate time.

Such information transfer systems would also resemble the technical underpinnings of reg-

ulation as discussed in Section 4.5. As with all information transfers discussed in this report,

questions of political feasibility are likely to hinge on the scope, limits, and risks of the infor-

mation that could be provided via any proposed mechanism (see also Section 4.1).311

The prospect of responding to an AI emergency raises even more questions. Mechanisms

that preserve state ability to act would face similar technical challenges as those outlined in

the section on regulation below (Section 4.5). If such mechanisms are intended to be used

on the international level (e.g., by a group of states via a protocol such as a vote), they would

likely face extreme political challenges. For example, the same mechanisms that could pause

or permanently disable AI systems exhibiting dangerous behavior in an emergency could po-

tentially be misused by an adversary. An adversary might be able to unilaterally weaponize

such mechanisms to gain an advantage in war or industrial competition. Equally, if small

groups of states can veto the use of these mechanisms, there might be very few situations

in which the mechanisms would actually be employed.312 The potential for failures in both

directions is real, and thus any attempt to build verifiable emergency response powers into

an international agreement would have to grapple with questions like these. The potentially

devastating security consequences of mistakes may make such mechanisms extremely chal-

310 Andrea Miotti and Akash Wasil, ‘Taking Control: Policies to Address Extinction Risks from Advanced AI’
(arXiv, 31 October 2023), http://arxiv.org/abs/2310.20563.

311 It should be noted that states cannot be expected to reliably report events to the international community,
even if they are very important. For example, the Soviet Union attempted to keep the meltdown at Chernobyl
secret. Olga Bertelsen, ‘Secrecy and the Disinformation Campaign Surrounding Chernobyl’, International Jour-
nal of Intelligence and CounterIntelligence 35, no. 2 (3 April 2022): 292–317, https://doi.org/10.1080/0885
0607.2021.2018262.

312 One analogy is the authority of the UN Security Council to manage questions of war and peace and how
action is rare due to the permanent members of the council holding a veto over all such decisions.
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lenging to implement.313 Mechanisms less suited to misuse might need to be found in order

to address these concerns.

Our discussion of emergency response will be left underspecified in this report in favor of

more emphasis on regulation (described below). The reader should understand that discus-

sions about preparing for AI emergencies are in their infancy and thus should not take any

of the claims provided here as definitive on the subject. The goal of this section was to out-

line some of the computational aspects of emergency preparation and highlight how these

aspects significantly overlap with the verification of AI regulation.

4.5 Regulate

In this agreement type, states verifiably regulate one or more aspects of AI development or

usage according to international standards. By attempting to discuss AI regulation broadly,

this section casts a very wide net, including both the civilian and military spheres as well

as the full spectrum of model sizes and uses. Many different governance goals and verifi-

cation approaches are possible within this category, so the discussion in this report will be

necessarily limited.

The vast potential range of potential rules and target models within this category also implies

very different levels of sensitivity. Some domains might be relatively benign (e.g., commer-

cial models trained on no particularly sensitive data) while others will be maximally sensitive

(e.g., models created and used by state militaries or intelligence agencies). Overall, this dis-

cussion focuses on verification mechanisms that are potentially workable in the maximally

sensitive cases, since generally the less sensitive cases are easier problems to solve.

The full space of potential regulations is beyond the scope of this report, so only a few ex-

amples will be provided. Other works have explored this space and this remains an area of

active research.314

While regulations could refer to any number of technical systems, institutions, or individ-

uals, this section will focus on regulations that place technical (digital) requirements on AI

development and AI deployment. This focus is justified primarily by the observation that

there is a well-established literature on how to verifiably regulate institutions and individuals,

but little has yet been said about how to verifiably regulate AI development and deployment.

The following subsections will focus on hardware-centric verification of regulation rather

than personnel-based methods. This is because hardware is better able to scrutinize the de-

tails of computational operations, and hardware-enabled verification is more scalable. To

augment these approaches, personnel-based verification of AI regulation could be under-

313 As with all mechanisms discussed in this report, the severity of imperfections will be weighed by political
decision-makers against their reasons for considering such agreements in the first place. Even agreements with
fairly severe issues might go ahead if the problems they solve are much larger or more likely than the problems
they introduce.

314 Markus Anderljung et al., ‘Frontier AI Regulation: Managing Emerging Risks to Public Safety’ (arXiv, 11 July
2023), http://arxiv.org/abs/2307.03718; David Manheim et al., ‘The Necessity of AI Audit Standards Boards’
(arXiv, 11 April 2024), https://doi.org/10.48550/arXiv.2404.13060.
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taken in parallel. However, this faces a much more severe transparency-security tradeoff

than the hardware mechanisms discussed here and may therefore be ill-suited for verifying

regulatory efforts that involve sensitive information (see Section 2.1.2).

4.5.1 AI development

Regulating AI development means applying rules to the creation and modification of AI mod-

els. As noted in the introduction, model development is often split into two major phases

in current development paradigms: training and fine-tuning.315 Training typically employs

large general datasets and large amounts of compute to produce a relatively general-purpose

model. Fine-tuning is then employed to modify the model behavior in a more fine-grained

way.

Training Fine-tuning

Training institution Fine-tuning institution Deployment institution

Inference 
(In a data center)

Data center phases of AI development and deployment

Figure 4.2: Schematic representation of the phases of data center-based AI development and
deployment. Institutions are mentioned to highlight the fact that it is possible for different
institutions to play different roles throughout the model lifecycle—even though today it is
common for single institutions to play multiple (or all) roles in this chain.

4.5.1.1 Training verification concepts

4.5.1.1.1 Training plan

A training plan for a new AI model will include the training data,316 algorithms, and

hyperparameters—including the starting weights (if continuing a prior model run) or the

verifiable source of randomness used for initializing the weights.317 Possession of the training

315 The terms used for the different phases of training are evolving. For a description of some recent changes,
see Toby Ord, ‘Inference Scaling Reshapes AI Governance’, 12 February 2025, https://www.tobyord.com/writ
ing/inference-scaling-reshapes-ai-governance.

316 On the usefulness of regulating via data, see Ritwik Gupta et al., ‘Data-Centric AI Governance: Addressing
the Limitations of Model-Focused Policies’ (arXiv, 25 September 2024), https://doi.org/10.48550/arXiv.2
409.17216.

317 A very similar concept to a training plan is discussed in Shavit (2023). The key difference being that a training
plan is intended to be scrutinized before training commences, while a proof-of-training transcript is generated
while training a model. Shavit, ‘What Does It Take to Catch a Chinchilla?’
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plan should allow an actor to (re)produce a model, with only relatively small discrepancies

that might be ascribed to hardware noise.318

Incomplete training plans—such as plans that include data but not the algorithm or

hyperparameters—might still be useful for regulation. This report will not explore all po-

tential partial training plans and which kinds of verifiable regulatory commitments those

plans might enable. Such an area deserves significant further attention, since if the infor-

mation that must be exchanged for verification is less sensitive, that might make it much

more likely that an agreement is politically acceptable to all sides. For the rest of this report,

training plans are presumed to be complete.

4.5.1.1.2 Training transcript

A training transcript is the complete record of the training of a machine learning system,

including training data, hyperparameters, and a record of the digital objects that constitute

the emerging model and attest to its provenance. This includes model weights and weight

shards, as well as potentially gradients or activations depending on the training technique.319

4.5.1.1.3 Proof of training

Building on the concepts developed by Shavit (2023), we define a “proof of training” as ev-

idence that is sufficient to prove that a given model was generated using a given training

transcript.320 Provided with such a proof, the Verifier would then have extremely strong

evidence that the model was indeed trained in the declared manner.321

4.5.1.2 Potential political goals

4.5.1.2.1 Inhibit or ban development of extremely large models

States may make an agreement which verifiably inhibits their ability to produce mod-

els above a certain size—measured via quantities such as compute budget or parameter

318 Shavit 2023 and Choi, Shavid, and Duvenaud 2023 both grapple with this problem. As they note, in theory,
it should be possible for the Prover and Verifier to create highly reproducible training techniques, although this
may not currently be possible with leading edge AI training hardware. Whether or not highly reproducible
training remains a serious technical difficulty—or source of significant training inefficiency—moving forward is
a question that deserves urgent work.

319 Shavit.
320 Dami Choi, Yonadav Shavit, and David Duvenaud, ‘Tools for Verifying Neural Models’ Training Data’ (arXiv,

2 July 2023), https://doi.org/10.48550/arXiv.2307.00682; Shavit, ‘What Does It Take to Catch a Chinchilla?’
321 Given enough data and compute, it is possible to replicate parts of the training run exactly, thus allowing for

targeted or even very extensive examination of the training results. In the limit, this would be as computationally
costly as building the model in the first place. Faster alternatives to such a process would therefore be desirable.
See Shavit, ‘What Does It Take to Catch a Chinchilla?’ and ‘AICert’, Mithril Security, accessed 2 October 2024,
https://www.mithrilsecurity.io/aicert.
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count.322,323 This policy goal is premised on the widespread acknowledgement that ex-

tremely large models are particularly likely to generate novel capabilities and risks.324 De-

pending on the political goals, a continuum of potential agreements are available, ranging

from blunt inhibition mechanisms up to fine-grained controls. Blunt mechanisms involve

making broad changes to either compute chips or how they are physically arranged to make

it more costly and slow to produce large models. By contrast, fine-grained controls are spe-

cific mechanisms that could prevent the production of extremely large models in a variety

of ways, while having less of an effect on other uses of compute. The efficiency of most AI

development would be better served by fine-grained rather than blunt mechanisms. More-

over, a true ban is likely impossible via blunt mechanisms, but is potentially workable via

fine-grained controls.

The key advantage of blunt mechanisms is that the information they require to implement

and verify is not sensitive—and thus these mechanisms are very likely to be deemed less re-

vealing (or at least less risky) in terms of security details than more fine-grained mechanisms.

For example, one speculative mechanism is to limit the admissible hardware configurations

that states can employ via “fixed set” mechanisms—implemented via either mechanisms

built into AI-specialized chips or monitored arrangements of hardware (this is discussed fur-

ther later, in Section 4.5.1.3.1).325 Such an approach would make large models somewhat

harder to create, but would otherwise not provide the Verifier with any knowledge of what

the Prover was doing.326 However, this would potentially hamper many activities that are

not within the purview of the policy goal. By contrast, a fine-grained ban on large models

could be verified via a more complicated verification stack. This would require more infor-

mation to be made available to automated evaluation systems installed by the Verifier and

perhaps even to the Verifier’s human agents (see Section 3.5). This more intrusive approach

could enable a verifiable ban on non-compliant activities while allowing all other activities

to proceed at full pace. The overall design of the verification system for inhibiting or ban-

322 “Compute budget” refers to the total compute used for a project (e.g., the FLOPs—Floating point operations—
used in training an AI model). A related use of this term elsewhere in the literature is the total compute capacity
available to a given actor during a given period of time. Lennart Heim et al., ‘Governing Through The Cloud’,
2024.

323 “Inhibit” in this sense is raising the cost, time, complexity, or other difficulties of creating a model beyond
the threshold set in regulation. The relative scale of this inhibition is not explored in this report. See Scher and
Thiergart (2024) for an exploration of how hardware arrangements could be used to impose very substantial
costs (approximately one hundred times the cost) on non-compliant activities.

324 Markus Anderljung et al., ‘Frontier AI Regulation: Managing Emerging Risks to Public Safety’ (arXiv, 11 July
2023), http://arxiv.org/abs/2307.03718; Girish Sastry et al., ‘Computing Power and the Governance of
Artificial Intelligence’ (arXiv, 13 February 2024), http://arxiv.org/abs/2402.08797.

325 More extreme actions in the blunt category are theoretically possible, including verifiably powering down
(or even destroying) portions of compute. The available options of this domain tend to be extremely costly (with
effects that would significantly damage a state’s AI industry) and are thus not considered further in this report.

326 A significant further challenge of the blunt approach is that some hardware configurations may be difficult to
change if the regulatory model size threshold either rises or falls. Either direction is possible, since algorithmic
improvements may make smaller numbers of parameters of computational operations more dangerous, while
of course further work may also demonstrate that much larger models are needed for the creation of politi-
cally important dangers. The fast-moving frontier of AI development in recent years underscores how rapidly
the technical and policy landscapes can change, thus indicating that policymaking in this space should include
provisions for rapid revisions to model size thresholds. See also Sara Hooker, ‘On the Limitations of Compute
Thresholds as a Governance Strategy’ (arXiv, 29 July 2024), https://doi.org/10.48550/arXiv.2407.05694.
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ning extremely large models may therefore take different shapes depending on the political

choices made during its creation.

4.5.1.2.2 Regulation of model inputs

The inputs that are used to create a model may be the subject of regulation. All of these

components, which collectively form the training plan (see Section 4.5.1.1.1), can affect the

capability and behavior of the resulting system in important ways. Some examples are:

• Data: Some training data types could be banned, such as data that might enable the

creation of chemical, biological, radiological, nuclear, or cyber weapons.327,328

• Algorithm: Regulation might ban the use of reinforcement learning methods that are

able to create agents with the ability to plan over long time horizons.329

• Hyperparameters: Model training that is declared to be a new model (and not a contin-

uation of a prior training run) must declare a verifiable source of randomness against

which an initial model weight snapshot can be compared.330

• Compute budget: As noted in Section 4.5.1.2.1, regulation may also limit the compute

budget or parameter number of models.

4.5.1.2.3 Regulation of model behavior or attributes

Regulations may also be framed with regards to the actual behavior or attributes of models,

such as their performance on certain tasks. These sorts of tests for models are part of a new

and rapidly expanding field of knowledge that includes concepts such as model evaluation

(or “evals”), audits, and capability elicitation. This report will not detail the content of such

regulations, but will explore in the following subsections how the application of such rules

could be verified. Some model assessments can be run against intermediate versions of the

model that are produced during the model training process, while others may only be viable

after the model has completed training (some distinctions shaping these choices are outlined

in the following sections).

To make robust verifiable claims about models, one approach is to combine a proof of train-

ing with other model assessments. Three pieces that could work well together are:

1. A training plan assessment can demonstrate that declared inputs are compliant.

327 Data-based regulations are complicated by the challenge that dangerous capabilities might be possible even
if only unproblematic training data is used. Widely known and discussed knowledge of nuclear, biological, and
chemical sciences might be sufficient for a model to generate insights that states perceive as dangerous. One
approach to this challenge is regulation based on model capability, discussed below. See also Reuel and Bucknall
(2024), Section 3.1.1.

328 Jonas B. Sandbrink, ‘Artificial Intelligence and Biological Misuse: Differentiating Risks of Language Models
and Biological Design Tools’ (arXiv, 23 December 2023), https://doi.org/10.48550/arXiv.2306.13952; John
Halstead, ‘Managing Risks from AI-Enabled Biological Tools’, Centre for the Governance of AI (blog), 5 August
2024, https://www.governance.ai/analysis/managing-risks-from-ai-enabled-biological-tools.

329 Cohen et al., ‘Regulating Advanced Artificial Agents’.
330 This is one potential rule which can be verified by appropriate use of a proof of training transcript as explored

in Shavit, ‘What Does It Take to Catch a Chinchilla?’
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2. Section 4.5.1.1.3 can demonstrate that the model was produced in the declared way. It

can prove that precisely the declared data, algorithm, and hyperparameters were used

to produce the final model.331

3. Model evaluation techniques can (attempt to) prove that the model does or does not

have certain abilities or attributes (see Appendix G).

4.5.1.3 Verification approaches for AI development

A simplified view of verification for AI development is shown below, illustrating the different

kinds of information available for verification at various stages in the process. This diagram is

applicable to either the training or fine-tuning steps of the process, though some differences

between the two will be discussed below.

Verified computational infrastructure

Preparation Training Review

Final model performance

Proof of training

Training plan

Intermediate model

performance

Training transcript

Verifiable agreement for AI development

Figure 4.3: A schematic representation of the information available at different stages of the
AI development process. During preparation, all that is known is the training plan. Once
training has begun, all of the information from the preparation phase is still available, and
further information is available in the form of the intermediate model performance and
the training transcript. Finally, during the review phase, all prior information can be made
available along with information that only becomes available after training, such as the final
model performance.

To verify regulations applied to either training or fine-tuning, there must be verified phys-

ical infrastructure coupled with rules applied to at least one of the following phases of AI

development: preparation, training, and review. The following subsection will discuss these

aspects in more detail, followed in turn by a discussion of how verifying fine-tuning carries

some additional requirements.

4.5.1.3.1 Verified computational infrastructure

In order to make robust claims about the AI training being done on computational infrastruc-

ture, some kind of verifiable claim must be made about that infrastructure (see Appendix D).

Verified computational infrastructure can allow a variety of different claims to be made ver-

ifiably, including those claims that are crucial aspects of international agreements and those
331 Shavit; Choi, Shavit, and Duvenaud, ‘Tools for Verifying Neural Models’ Training Data’.
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claims that allow other kinds of verifiable statements to be made. The following list includes

examples of both:

• Confidential computing: Verified hardware stacks can make confidential computing a

credible way to make verifiable claims about digital objects (see Section 3.5).

• Disallowdigital exfiltration: Physical enclosure of infrastructure can be combined with

other mechanisms to provide guarantees that digital objects such as models cannot leave

the premises undetected (see Section 2.5).

• Digital perimeter: Relatedly, digital infrastructures can be set up to automatically pro-

vide verifiable evidence (such as cryptographic commitments) of the content of digital

exchanges within the infrastructure (see Section 2.5.2.4).

• License-lockedhardware: Verified infrastructure can be demonstrably locked by licens-

ing mechanisms, thus allowing credible claims about the circumstances under which

that hardware can be unlocked for use in computations (see Section 2.2.4.5 and Sec-

tion 3.6.2).

• Guaranteed encryption: Similarly, verified physical infrastructure can provide credi-

ble guarantees that particular digital objects such as models are guaranteed to be en-

crypted at particular points in their lifecycle with particular keys—including potentially

keys provided by the Verifier, Prover, or both—thus enabling guarantees that the model

cannot be meaningfully copied until one or more decryption keys are revealed via gov-

ernance processes (see Section 2.2.4.7).

• “Fixed set” hardware: Verified hardware is placed into a configuration that makes it

more costly to create models that would use more compute operations than an amount

specified in regulation (see Appendix I).

• Chip density controls: Hardware inspections or location mechanisms on chips (see Sec-

tion 2.2.4.6) could enable the regulation of chip densities. This might reduce actors’ abil-

ity to train large models, as described above for the fixed set approach (see Appendix J).

4.5.1.3.2 Verification during preparation for development

If development is taking place on verified computational infrastructure as described above,

it becomes possible to perform verification during the preparation phase—before training

(or fine-tuning) commences. Verification during the preparation phase can allow Verifiers

to observe the hardware arrangements and the training plan (see Section 4.5.1.1.1), but not

the information generated later, such as model snapshots or the final model. Therefore, in

addition to the verifiable claims that can be made via verification of the infrastructure (see

above), verification in this phase can be used to ensure that regulations pertaining to model

inputs are applied correctly (see Section 4.5.1.2.2).

Verification during preparation can be applied in a number of different ways for many pos-

sible regulatory goals. Here are a two examples of how verification systems could be set up

for the preparation phase:
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• Shared data centers: Data centers that are mutually verified by the Prover and Verifier

are used to conduct all phases of training, and thus rules about training plans can be

tested and verified before training can proceed (see Section 3.6.1).

• Greenlighting: Training hardware can be locked until an appropriate license is pro-

vided, thus allowing a governance and verification process to examine the training plan

before training commences.332 One implementation approach would go as follows: a

training plan can be securely examined in a mutually verified facility, thus allowing the

Prover to demonstrate that it is compliant. Once the training plan is proven to be com-

pliant, a license is provided for that training plan which the Prover can then use to unlock

the training hardware and train their model (see Appendix L.1 and Sections 3.5 and 3.6.2).

Note that mutually verified licensing systems can be under the physical control of either

the Prover or Verifier, which changes the political meaning of such a verification regime

(see Section 3.6.2).

4.5.1.3.3 Verification during training

Verification during training allows for in-flight governance of the training process. For ex-

ample, it could lead to training being discontinued if dangerous capabilities have emerged.

In this phase of verification, verification processes can have access to not only the training

plan, but also the training transcript and the intermediate versions of the model that have

been produced so far.333 Furthermore, they might even have access to details of training

which might otherwise be transient, such as gradient updates.334 The advantages of verifi-

cation during training are centered on 1) its access to these normally transient details of the

training process and 2) its ability to test for the emergence of dangerous capabilities within

the training process itself. Its major disadvantages are that 1) evaluations probably need to be

fully automated to be fast enough, 2) only fast, low-cost evaluations are feasible during this

phase, since they will presumably be run many times, and 3) there is a tradeoff between de-

velopment speed and security. If a secure off-site verification system is used, development

would be slowed further due to heavy data transmission needs. Alternatively, verification

could be done on the same hardware as training. This latter scenario would involve sensitive

evaluation content being available on the same machines as model training, thus potentially

providing the Prover with a greater chance of extracting that sensitive information.335 As

with verification during the preparation stage described above, both shared data centers and

greenlighting are potential ways to implement verification during training.336

332 Lennart Heim, ‘The Case for Pre-Emptive Authorizations for AI Training’, Lennart Heim (blog), 10 June 2023,
https://blog.heim.xyz/the-case-for-pre-emptive-authorizations/.

333 Here it is presumed that verification during training is taking place on the same hardware—or at least within
the same data center—as the main training processes. It is not being done in a separate verification facility.

334 Storing particularly transient structures might not be desirable under normal circumstances, and it may also
not be feasible to both store them and transmit them to a verification facility, depending on the rate at which
such structures are produced and their total size.

335 If verification during training were instead done in a specialized verification facility, this issue would be mit-
igated. Unfortunately, regularly transferring large amounts of data to a verification facility might be impractical
for multiple reasons, including potentially major slowdowns in AI development.

336 Greenlighting could require that training code also include a structure for running evaluation code provided
by the Verifier.
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4.5.1.3.4 Verification after training

Verification after training337 can leverage more data and computing resources than the earlier

phases. In theory, it can be used to verify rules about the training plan, the training process,

and the final model. The only data that it may lack access to is the ephemeral structures that

are used within the training process but not kept, as discussed above.

All of these advantages of post-training verification can be weighed against one key disad-

vantage. If verification only happens after training, then the Prover could complete a non-

compliant training run before they are caught being in violation of the agreement. However,

this could be a feature, not a bug, since delaying verification somewhat can be strongly de-

sired by the Prover for various reasons (see Appendix Appendix C.2). Furthermore, to the

extent that this disadvantage remains a political problem, it is worth noting that verification

schemes are typically not intended to be perfect, and such an imperfect approach could be

the starting point for a verification regime that gradually evolves toward covering earlier

phases of the AI development process (see Appendix C.3).

Post-training verification can be implemented via the schemes described under verifiable

confidential computing (Section 2.5.3) or via a large mutually verified cluster which can be

used for both development and verification (see Section 3.6.1). See also Section 3.5 for how

security-preserving verification of digital objects can be accomplished in either case.

4.5.1.4 Verifying rules relating to fine-tuning and online learning

Governing the modification of a model after it has been trained introduces new challenges.

Fine-tuning is the modification of an existing trained model for new or refined purposes,

while online learning refers to models that are regularly and perhaps rapidly updated.338

Relatively little computing power is required to make small changes to a model, thus making

fine-tuning nearly impossible to fully govern if model weights are spread widely. Nonethe-

less, governance of some hardware might still be useful, even if complete coverage cannot

be achieved.339

Verifiable regulation of fine-tuning or online learning can be framed in two different ways:

1. Verifying that particular hardware is complying with an agreement when it undertakes

these operations.

2. Verifying that a given model is never modified in a way that violates the agreement.

337 This is denoted “Review” in Figure 4.3.
338 Despite the apparent connection in its name, this technique does not relate to the Internet.
339 At least two political questions are at hand here. First, to what extent should models be allowed to be copied

widely if such copying makes it infeasible to track what they are actually used for? Second, how should regu-
lations treat models that come from unverified hardware? Drawing a bright line between the verified and the
unverified might be a conceptually simple and politically defensible position, and this would require regulations
that both strictly control the locations and copies of models while also disallowing regulated hardware from run-
ning inference on unknown models. However, it may prove impractical or undesirable to enforce such a hard
line, especially considering the widespread use of open source models today.
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While verifying that rules are being followed by governed hardware can use the techniques

described above (see Section 4.5.1.3), verifying that a given model is never modified in a non-

compliant way requires somewhat different techniques. The remainder of this discussion

will focus on this latter challenge.

The verifiable regulation of fine-tuning or online learning for a model probably requires ver-

ifiable control of trained models. Control of trained models can be accomplished in two

general ways:340

1. Model location control: Verifiably keeping model copies secured within a small num-

ber of locations—all employing either strict physical controls and air gaps or a digital

perimeter to demonstrate security. Within this approach, the institution that created a

model could verifiably control it thereafter, or they could securely transfer it to another

institution.

2. Models that cannot be fine-tuned: It may be possible to construct models that are ex-

tremely difficult to fine-tune—requiring approximately as much compute to fine-tune

as it would require to fully pre-train a model of similar scale. Exploratory work on this

subject has had some success, but much more study is needed to understand what po-

tential this approach holds for making fine-tuning infeasible even when highly capable

adversaries attempt to circumvent these protections.341 Presuming that such techniques

can be developed, this approach could be paired with a governance apparatus that can

regulate model creation to ensure that important open source models are broadly safe

according to regulated dimensions, thus reducing the overall risks of fine-tuning.342

Paradoxically, however, similar technologies could also enable certain categories of veri-

fication circumvention.343 A further concern for this approach is that downstream users

might want to fine-tune their models to avoid safety hazards that they discover within

them, which they wouldn’t be able to do if the models couldn’t be fine-tuned.

Models kept under physical control can be modified according to governance rules, and all of

the techniques detailed in Section 4.5.1.3 can be used to prove adherence to those rules. For

example, hardware controls and code attestation can be used together to credibly demon-

340 Many other factors affect the relative danger of broadly available models. Most were discussed previously
as model inputs. For example, if data related to CBRN weapons were very tightly controlled, it might be less
feasible for a non-state actor to fine-tune a widely available model to provide them with information about such
weapons. Not only would it have been more difficult for that actor to find fine-tuning examples to work with,
but the model itself would likely also contain less CBRN-related knowledge. Realistically however, meaningfully
changing the availability of data in the public sphere and dark web would be very challenging.

341 Rishub Tamirisa et al., ‘Tamper-Resistant Safeguards for Open-Weight LLMs’ (arXiv, 8 August 2024), https:
//doi.org/10.48550/arXiv.2408.00761; Jiangyi Deng et al., ‘SOPHON: Non-Fine-Tunable Learning to
Restrain Task Transferability For Pre-Trained Models’, arXiv.org, 19 April 2024, https://arxiv.org/abs/2404
.12699v1.

342 Furthermore, there may be a deep tradeoff with these techniques since it may or may not be possible to make
models infeasible to fine-tune on a topic-sensitive basis. A model that cannot be fine-tuned in any way may be
of drastically limited utility, but a model that cannot be fine-tuned in only a small number of key regulatory
dimensions might be able to retain much of its broad usefulness while also staying safe.

343 If models can be made that cannot be fine-tuned, then entire categories of evaluations—capability elicitation
evals—cannot be used on such models. Furthermore, it might not be possible to unlock password-locked models
via fine-tuning to understand what the true capabilities of the model are.
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strate that a particular model is being modified. Other techniques detailed above would al-

low for verification of the training plan and the training transcript for the fine-tuning process.

While the fine-tuning algorithms will look somewhat different from the training algorithms,

the general verification approaches described above should still be workable.

4.5.2 AI deployment

Regulating model deployment is generally more difficult than regulating model develop-

ment. A full account of the difficulties of deployment governance is outside the scope of

this report. Nonetheless, four major factors are crucial to any conversation about deploy-

ment governance. First, models can be used in diverse ways in diverse locations on di-

verse equipment—thus making it very difficult to provide governance that is sensitive to

all these various contexts.344 Second, governing model usage is likely to require access to

much more private or security-sensitive information than analogous governance of model

development—thus raising legitimate fears about information exposure, both for individu-

als and for institutions. Third, even a relatively small amount of model usage might allow

dangerous actions such as the creation of a biological or cyber weapon—thus requiring the

close examination of a large proportion of all post-deployment model usage. Fourth, most

existing techniques for verifying the integrity of inference are very slow—many times slower

than inference itself—thus raising the concern that some forms of deployment governance

may be computationally infeasible without significant technical advances.345

4.5.2.1 Inference governance and strict model control

Inference governance depends on strict control of hardware, and may also depend on strict

control of created models. As noted above for the verification of rules regarding fine-tuning,

downstream governance may be very limited if models can be copied without controls.

While some hardware might have inference governance in place, other hardware could be

creating, modifying, or running non-compliant models. For the same reasons noted in Sec-

tion 1.5.2, proving that rules are being followed about AI deployment requires that there be

a credible way to limit the space of things that must be examined. Two categories of solu-

tions to this problem are explored briefly in this report.346 First, strict control of both model

creation and post-creation modification for models (as described above for the verification

of fine-tuning, see Section 4.5.1.4) allows actors to be confident that the model will behave

correctly and that it cannot be copied and changed without detection. Inference conducted

with a controlled model can therefore be tracked, governed, and verified (see Section 4.5.1.4).

344 Consider that the same inference in different contexts could be compliant or non-compliant. For example,
using a model to find cyber vulnerabilities could be fine if done by a white hat hacker, but misuse if done by a
black hat hacker. Precisely the same inference content might be employed in each case, thus making the context
the crucial dimension.

345 For more on verifying deployed models see sections 5.3 and 5.4 of Anka Reuel et al., ‘Open Problems in
Technical AI Governance’, 2024.

346 Future work on AI deployment rulemaking and governance could explore whether there are other ways to
simplify this space, such as through a provably limited supply of relevant deployment hardware (such as data
centers above a certain size, inference-specialized chips, or robots of a given category), provable limitations on
electric power availability, or extremely robust hardware mechanisms for deployment hardware.
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Second, control of inference compute allows for fingerprinting of models and thus can be

combined with similar fingerprinting within development governance (see Section 4.5.1) to

prove that the deployed model is in fact identical to the model that was tested earlier. Such

a scheme could also be extended to limit or even ban inference using models with unknown

fingerprints.347 Neither of these approaches are designed to prove anything about the ways

that ungoverned compute is being used, but they do provide a way to verify the rules en-

forced on governed compute.

4.5.2.2 Inference verification concepts

4.5.2.2.1 Inference plan

Analogously to the training plans described earlier (see Section 4.5.1.1.1), an inference plan

is all of the information needed to deploy a given model in a way that produces replicable

inferences. This information could include all or some subset of the following kinds of in-

formation:

• the model’s fingerprint,

• the full model,

• precise identifiers for the type and identity of the hardware that the model will be de-

ployed on (perhaps including information about networking hardware, enclosures, and

AI-specialized chips),

• a codification of the kinds of inference allowed, including potential limitations on:

◦ the topics of inference (e.g., prohibiting disallowed topics such as CBRN weapons).

◦ compute budget, number of tokens, number of iterations of test-time-compute,

and memory consumption.348

• rules regarding how queries from different categories of users will be limited.349

In theory, an inference plan provides a description of what will be done that is granular

and clearly operationalized enough to be used as a regulatory (and verifiable) declaration.

Ideally, it will be specified in a way that allows it to be used as a rubric against which the

actual deployment can be tested using automated checks. For example, all inference requests

could be required to pass a set of automated tests (including AI-powered evaluations) which

can apply to the input, output, or detailed internal operations of the inference process. As

347 See also Appendix L.3.
348 Test-time compute is the use of additional compute at inference time to arrive at better answers. Key early

products employing this feature are OpenAI’s o1 and o3 models. See also Charlie Snell et al., ‘Scaling LLM
Test-Time Compute Optimally Can Be More Effective than Scaling Model Parameters’ (arXiv, 6 August 2024),
https://doi.org/10.48550/arXiv.2408.03314.

349 This would require having different inference plans for different categories of users, who would be identi-
fied via standard digital authentication and authorization techniques. Differences in inference plans could be for
differing tiers of service (e.g., premium accounts), different types of service (e.g., internal, corporate clients, indi-
viduals, government agencies), and for different security levels (e.g., white hat cybersecurity companies). Mixing
these many categories via a single API might be inadvisable for security reasons, but providers may nonetheless
choose to provide a set of capabilities via one API.
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will be explored below, the total desirable suite of tests might be substantial, thus requiring

non-trivial computational resources.

Incomplete inference plans might also be useful for regulation. For example, an inference

plan stipulating only a model fingerprint along with the unique identifiers for the hardware

it will run on might be sufficient for a Prover to meaningfully declare their compliance with

simple rules such as “only models that have been shown to be compliant with training reg-

ulations are allowed to do inference”. While this kind of rule is very limited, it might be

sufficient for some governance goals.

4.5.2.2.2 Inference transcript

Analogously to a training transcript described earlier (see Section 4.5.1.1.2), an inference tran-

script contains the complete record of an inference interaction. When a complete record is

not needed, a minimal version of the inference transcript could include the model finger-

print as well as the input and output tokens and metadata.

4.5.2.2.3 Proof of inference

In combination with access to the inference plan, a Verifier with access to the inference tran-

script and sufficient computational resources should be able to fully verify that the inference

transcript is precisely correct and complete. A fast (but less robust) version of this could be

accomplished via a remote attestation signature similar to that available via confidential com-

puting (see Section 2.2.4.4 and Section 2.2.4.2). Slower (but more robust) versions might use

other techniques, such as zero-knowledge proofs, to demonstrate that the model performed

this inference.350 Today, only the former category appears to be performant enough for

usage at scale.

4.5.2.3 Regulating data center inference

Regulation and verification of inference must balance four important factors: 1) sensitive

inference data, 2) sensitive evaluation data, 3) computational overhead, and 4) time delay be-

tween the operation and verification. To protect inference data, the Prover must be sure that

all relevant infrastructure is safe from data exfiltration by the Verifier or any other actors—

and the Verifier mirrors these concerns with their evaluation data. Solutions are available to

manage both sets of security needs, but at least some of those solutions call for separate in-

frastructures for AI operations and verification. These separate infrastructures might make

time delays too substantial (as in the case of an air-gapped neutral verification facility), raising

worries that non-compliant inference might be undertaken for some time before the Veri-

fier would notice. Furthermore, verification processes must be computationally lightweight

350 Haochen Sun, Jason Li, and Hongyang Zhang, ‘zkLLM: Zero Knowledge Proofs for Large Language Models’
(arXiv, 24 April 2024), https://doi.org/10.48550/arXiv.2404.16109.
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enough to either be rapidly completed in-line on the production hardware or run on the

verification data center.351

Given the expected low latency of inference, options for inference verification might be lim-

ited to two: First, inferences could be subject to verification checks on the production hard-

ware itself as the inference is being completed.352 Second, production inference processes

could verifiably save all the relevant data needed to verify adherence to the rules, and that

data could be processed in a separate verification facility. Given that this data might be of

substantial size, and processing it fully might be computationally weighty, one workable ap-

proach might be a probabilistic inference verification system. Rather than attempting to

verify that the rules were followed in every inference exchange, a random subset could be

selected for verification. If this system were arranged in a way such that the Verifier could

select the random inferences to be tested after those inferences had already been attested to

with cryptographic commitments, then the Prover would have limited ability to circumvent

verification without being caught.

4.5.2.3.1 Potential political goals of regulating data center inference

Data center inference governance could be aimed at a number of political goals. Here are a

few rules that could be enforced and verified via inference governance on specified hardware:

• Only models that have been demonstrated to be compliant with training rules can run

inference.

• Inferences can be attributed to governed models.353

• Only certain amounts of test-time compute can be used by any actor.354

• Permit only certain categories of inference prompt or output tokens (e.g., disallowing

CBRN-related topics or stipulating one operating language to avoid low-resource lan-

guage attacks).

• Limit sensitive queries to specific users on specific deployments. If states are cooperating

to prevent the unauthorized use of potentially dangerous AI capabilities, they may also

deem some uses of potentially dangerous capabilities to be acceptable, such as white hat

cybersecurity work—but they may also want to verify that they are both limiting access

to such capabilities.

351 As will be explored below, more costly verification operations can be run on a random subset of inference
to provide evidence of compliance even if running the costly checks against all inference operations would be
infeasible.

352 This would slow down inference somewhat. It would also mean that evaluation data must be available on the
production hardware.

353 This can only be enforced imperfectly in the wild, such as attributing text on the internet, since a nefarious
user can make further changes to inference results before they employ them. So even if you know every bit of
text produced by all governed models, it could still be difficult to match observed text with the generated text.
Note that this requires having some kind of database of searchable inferences, which might be a further challenge
to verify if its functionality is important. This challenge is not explored further in this report. See also Reuel and
Bucknall (2024), Section 3.1.3.

354 This requires tracking actors themselves via a verified authentication and authorization system—a topic out-
side of this report’s scope.
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• Stipulate a combination of different rules, such as rules that diverge based on model

deployment location, hardware capabilities, token number, prompt/output rules, com-

pute used per minute, identity of users, etc.

• Allow militaries to demonstrate compliance with rules while permitting the Verifier to

know nothing else about their activities—including the location of their compute (see

Section 2.5.4.2).

4.5.2.3.2 Inference plan assessment

Inference plans (see Section 4.5.2.2.1) can be subject to evaluation to ensure that they are

compliant with regulations. Such evaluation might be trivial: for example, confirming that

the plan indeed disallows the various forms of prohibited inference. However, it can also

involve much more substantial techniques, such as privacy-preserving checks on inference

context metadata (e.g., system prompts) or inference algorithms (see Appendix E).

4.5.2.3.3 Automated enforcement of an inference plan

Hardware-enabled mechanisms can enable the enforcement of inference plans. Most likely

these mechanisms will need to operate at the pod level (see Section 2.5.4.1) to ensure that

rules about the model itself can be enforced.355 Mechanisms such as confidential computing,

speculative licensing schemes, or flexHEG secure processors could be used to implement

such enforcement.356

4.5.2.3.4 Verifying adherence to an inference plan

Verifiers could verify that a Prover is adhering to an inference plan in at least three ways:

1. Before inference, the Prover could demonstrate that their hardware is in a compliant

configuration and will only accept correctly signed code—which itself is also verified—

via hardware-backed mechanisms (see Section 4.5.2.3.3).

2. During inference, verification code can be run alongside inference code to check that

the rules are being adhered to.357

3. After inference, inference data can be analyzed in a verification facility to examine

whether it adheres to all rules.358

4.5.2.3.5 Verification approaches for inference

Finally, we can summarize some of the ways that rules about inference can be verified.

355 If this were attempted at the chip level, then each chip might only see a fraction of the model and other
associated information, making it difficult to decide what enforcement is needed.

356 See Section 2.2.4.4, Appendix L.2, and Petrie et al. 2024.
357 Verifying this scheme would likely depend on the same hardware-enabled mechanisms as described in Sec-

tion 4.5.2.3.3.
358 See Section 2.5.3.
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Figure 4.4: A schematic of the different kinds of information available within various phases
of data center-based AI inference. During preparation, all that is known is the inference
plan. Once inference has begun, further information can become available, including both
transient computational traces and the inference transcript. Finally, during the review stage,
all prior information can be available in addition to the final outputs of the inference as well
as the proof of inference. A discussion in the text engages with the potential difficulty of
retaining transient computational traces for later review.

4.5.2.3.5.a Verified computational infrastructure for inference

Verified hardware controls allow a wide variety of verifiable claims to be made. In addition

to the list of verifiable claims described in Section 4.5.1.3.1, a number of further claims can

be made which pertain to inference in particular. Verified hardware controls can prove that:

• a particular model is the one providing inference (see Appendix L.4).

• only a particular set of identified models have ever been loaded into memory (see Ap-

pendix L.5).

• extraneous copies of inference exchanges cannot be made.359

• inference plans will be adhered to (see Section 2.2.4.2 and Section 4.5.2.3.4).

4.5.2.3.5.b Verification during preparation for inference

Once an inference plan has been provided, further checks are possible. At this stage, veri-

fication processes have access to the hardware arrangements (see above) and the inference

plan (see Section 4.5.2.2.1). Verification during the preparation phase is likely centered on

ensuring that the inference plan has been tested for compliance (see Section 4.5.2.3.2), and

ensuring that the outcome of compliance testing controls whether inference actually begins.

Inference plan assessment could be done on mutually verified hardware (see Section 3.5) if

the plan contains sensitive information. Once the training plan has gone through testing, it

can be implemented on production hardware.

359 One way that this could be done is by proving that the only copy of the data goes to a verification data stream
that is encrypted by both the Prover and the Verifier (see Section 2.2.4.7).
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States can ensure that the correct training plan is loaded onto production hardware in at least

three ways. First, the Verifier might have access to cryptographic commitments about all

data exchanged with the production hardware (see Section 2.5.2.4), thus allowing the Prover

to demonstrate that the correct data has been loaded. Second, confidential computing tech-

niques might be used to demonstrate that the correct code and data has been loaded (see Sec-

tion 2.2.4.4 and Section 2.2.4.2). Third, the production inference hardware might be locked

until a signed inference plan is provided—thus allowing the inference plan verification pro-

cess to “greenlight” the inference plan.360

4.5.2.3.5.c Verification during inference

During inference, regulation and verification processes can access computational details that

will likely be unavailable later due to their size or sensitivity (see Section 4.5.2.2.1). Further-

more, regulation can apply directly to the output of inference, before it is returned to the

caller. During this phase, the inference system can enforce inference plan rules (see Sec-

tion 4.5.2.3.3) which can only be enforced at this time. For example, it can ensure that the

model is not reasoning in dangerous and proscribed ways.361

4.5.2.3.5.d Verification after inference

Finally, after an inference call has been completed, the Prover can:

• Prove that actual inferences completed align with the rules of the inference plan (see

Section 4.5.2.3.4 and Section 4.5.2.3.3).

• Prove that the inference completed was indeed completed with precisely the declared

model and input data (see Section 4.5.2.2.3).

• Provide verifiable fingerprints of all inference outputs, thus allowing inference-

generated content to be recognized later.362

Post-inference verification has access to almost as much information as verification during

inference (see above) and has two other advantages. First, post-inference verification can run

much more thorough checks on the entire inference process because it is not limited by a

strict time horizon, unlike tests that take place during the inference process. These more

thorough checks could even allow a full copy of the model to be run with the same random

seed as the original, thus allowing perfect replication of the inference results.363

360 See the related discussion in Section 4.5.1.3.2.
361 The term “reasoning” here applies in particular to the new family of models available since late 2024, termed

“reasoning models”, which use various techniques to think longer and more expansively about topics before
giving their final answers. These techniques in theory allow the “thoughts” of the AI system to be inspected even
as they are happening. Some existing techniques use chains of thought that are written in natural language while
other techniques might employ the model’s internal representations and thus require much more complicated
techniques to inspect. The latter category requires “interpretability” concepts that are beyond the scope of this
report.

362 The technical details of this technological challenge are out of scope for this report. In general, a complete
system of this sort may allow recognition of whether data in the wild was generated by a particular model, even
if that data has been changed somewhat.

363 Perfect replication is certainly not technologically trivial, but it should be possible with effort. See Shavit,
‘What Does It Take to Catch a Chinchilla?’
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Second, political agreements might allow inference to be verified only after a specified period

of time, which could also evolve during the lifetime of the agreement (see also Appendix C.2).

The Prover might desire a gap between inference time and inference verification for security

reasons. In such a scenario, the Prover has a deep interest in both a) proving their compliance

and b) guarding against the possibility that the verification processes will reveal important

security-relevant information. Meanwhile, the Verifier would similarly be balancing their

interest in rapid verification to ensure that no non-compliant behavior is taking place against

their desire to offer an agreement that is acceptable to the Prover—since the alternative to a

time lag might be no agreement at all.

4.5.2.3.6 Regulating sensitive mobile AI-enabled devices

The verification of mobile AI-enabled devices (see Section 2.2.5) such as autonomous

weapons differs sharply from the verification of data center operations. Regulating

highly sensitive AI-enabled devices such as weapons is a domain with particularly extreme

transparency-security tradeoffs. This makes it very difficult to find verification schemes that

have a good chance of being politically acceptable even if a form of regulation or mutual

restraint is desired by a set of states. Due to the breadth of this report, this section will only

be able to provide a high-level overview of the potential problems and approaches in this do-

main.364 This is the most explored subfield of AI verification, due to more than a decade of

research efforts to understand the possibilities for regulating lethal autonomous weapons.365

The analysis below presumes that there are three roughly separable processes involved in

creating mobile AI-enabled devices:

1. model development and testing, which is discussed at length in Section 4.5.1.

2. a pairing operation, where a model is installed into a hardware device.

3. activation of the model in a real usage context.

This is a highly simplified view of how AI-enabled devices might be managed. The goal of

this separation is to highlight how regulation and verification can take place at different times

and at different parts of the AI-enabled device lifecycle.

There are many potential types of rules about mobile AI-enabled devices, but this section

will only engage with rules that pertain relatively directly to the embedded AI—not general

features about hardware capabilities or deployment.

Before discussing the potential ways that these devices might be verifiably regulated, a few

notes about the scope of this analysis are worth emphasizing:

1. The primary goal of this report is to map out the technical-political frontier for verifica-

tion for various AI-related agreements. It is not a proposal for an agreement, advocacy

for an agreement, or a claim about the desirability, legality, or likelihood of such agree-
364 In particular, this subsection is likely missing approaches that might be reasonable in the civilian realm,

where transparency-security tradeoffs are less severe.
365 A vast number of works exist in this space. One review of particular interest is Ronald Arkin et al., ‘Au-

tonomous Weapon Systems: A Roadmapping Exercise’, 9 September 2019.
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Figure 4.5: A schematic representation of the lifecycle of an AI-enabled mobile device up
until it is employed in its usage context.

ments. At most, this is a sketch of a menu of technical verification options that states

might choose from if they face scenarios wherein effective verification would open up

mutually desirable political options.366

2. The emphasis on AI-enabled weaponry (as opposed to other kinds of AI-enabled de-

vices) is deliberate, as weaponry potentially has the most severe transparency-security

tradeoff. Thus, focusing on weaponry biases the discussion toward the most robust and

secure verification measures that appear to be available now or in the near future.

3. The subsections below emphasize scalable technical verification measures and thus de-

emphasize verification measures based on personnel, processes, and institutions.367

This is not intended to sideline the important value that could be added via such

measures. Rather, this report focuses on the technical-political frontier of verification,

and correspondingly prioritizes verification schemes centered on technology and those

which have the potential to be scaled up as much as political authorities would realisti-

cally desire.

4. This section explores direct rather than indirect verification (see Section 3.7.1). It should

be noted that current discussions on this topic among states are emphasizing (weak)

verification that is extremely indirect. Generally, states are implementing their own

systems to ensure that they follow their own interpretations of rules about AI-enabled

weapons. International visibility into the details of these implementations is minimal.

366 Relatedly, it is presumed that if states chose to implement one of these techniques, they would do so in a
way that is targeted at their specific political needs. So, for example, they would be judicious in defining which
devices would be covered under the agreement. Since states can face particularly intense transparency-security
tradeoffs with regards to arms control, it is reasonable to expect that any future efforts to create international
agreements to regulate weapons will focus on those weapons that pose the greatest risks. Weapon systems with
the potential to create major issues due to mistakes or misuse are one category where controls are more likely.
From this vantage point, it makes sense why even rival states have successfully placed important limits on nuclear
weapons but have not placed similar limits on most conventional arms. The broader debate about which AI-
enabled weapon systems might have this potential is beyond the scope of this report, but some aspects of it are
summarized in Section 1.3.

367 Reviewers of this work emphasized that the trend in international discussions regarding limits on au-
tonomous weapons is toward softer mechanisms such as measures and processes that are publicly adopted by
states.
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Each of the subsections below briefly analyzes an approach that could allow actors to make

verifiable claims about mobile AI-enabled devices employed in sensitive contexts, using the

example of AI-enabled weaponry as the central challenge. In the closing subsection, these

findings are summarized and their significant political challenges made more clear.

4.5.2.3.6.a Prove that AI control of the device is strictly limited

The hardware design of the AI-enabled device (and associated documentation) is revealed in

sufficient detail to a Verifier’s agent (e.g., a neutral party) to show that the AI would be unable

to access certain hardware functions (such as firing a weapon).368 Such a demonstration may

also need to be conducted physically by the Verifier’s agent, and would have to be repeated

in some way for all devices of a class.369 This kind of inspection is very likely to reveal infor-

mation about the weapon system that is unrelated to the agreement and thus run afoul of the

transparency-security tradeoff. The security concerns raised by the inspection process make

it unlikely that states would agree to it. To mitigate the severity of these security concerns,

hardware-based verification systems could potentially be used, such as those employed for

the INF Treaty,370 or those that have been proposed for nuclear warhead verification.371

While hardware can be changed after verification, such changes could potentially be revealed

through reinspection, whistleblower action, intelligence collection, or capture of a device or

its wreckage. Furthermore, if regulations limit the functions that can be automated, this

might be partially circumvented by having a remote automated system send the signals that

provide access to the limited hardware functions (e.g., telling the weapon to fire). This would

allow automated systems to be in command of all functionalities even if the governed device

is not fully automated on its own. However, this could still meaningfully limit the functioning

of the device, especially in terms of range and autonomy, since it would need to remain in

contact with a remote command system, and such continuous contact is difficult to guarantee

for some systems.372,373

4.5.2.3.6.b Prove that the device is incapable of undertaking prohibited actions

The Prover could also demonstrate that the device is incapable of certain things. For ex-

ample, a Prover could credibly demonstrate that the computational abilities of their device

368 Ronald Arkin et al., ‘Autonomous Weapon Systems: A Roadmapping Exercise’, 9 September 2019.
369 Another approach is to focus on the hardware supply networks in order to make claims like this. See also

Miles Brundage et al., ‘Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims’,
2020, Appendix IV.

370 Toivanen, ‘The Significance of Strategic Foresight in Verification Technologies’.
371 Sébastien Philippe et al., ‘A Physical Zero-Knowledge Object-Comparison System for Nuclear Warhead Ver-

ification’, Nature Communications 7, no. 1 (20 September 2016): 12890, https://doi.org/10.1038/ncomms12
890.

372 Consider the fact that electronic warfare substantially affects the range and usefulness of remotely piloted
weapons if they require electromagnetic signals in the open air (as opposed to over a fiber optic cable as some
variants employ).

373 Further technical and operational challenges with demonstrating “human control” are discussed in ‘Verify-
ing LAWS Regulation - Opportunities and Challenges’ (International Panel on the Regulation of Autonomous
Weapons, 2019), https://nbn-resolving.org/urn:nbn:de:0168-ssoar-77413-1.
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are guaranteed to fall short of the computational abilities needed for full autonomy.374 This

could be accomplished by demonstrating that the embedded computational power, mem-

ory, internal bandwidth, or electric power source are insufficient to achieve full autonomy.

4.5.2.3.6.c Prove that an AI model is compliant and it is the one embedded

If states make an agreement that includes rules about the behavior of devices with embedded

AI, demonstrating compliance with these rules could in theory be accomplished via a two-

part process: 1) demonstrate that the AI model is compliant with the rules and 2) demonstrate

that the compliant model is the one embedded in the device. This approach must address

the software update problem for mobile AI-enabled devices such as autonomous weapons: that

the Prover can modify a device into a non-compliant configuration after it’s been verified.375

Section 4.5.1 details how a model could be made demonstrably compliant with regulations.

The remaining challenge, therefore, is demonstrating that the compliant model is the one

that is actually embedded into the device. A few avenues are speculatively possible for solving

this problem:

• A hardware mechanism shows the loaded model’s fingerprint: A speculative hard-

ware mechanism akin to that described in Appendix L.4 allows the device to demon-

strate which model it has loaded.376 Physical access to the device is likely required

for such checks, thus necessitating a neutral setting for hardware verification (see Sec-

tion 2.5.4.3).377 A major security concern for this approach is that a plaintext model in-

stalled on a device is subject to theft. One somewhat speculative potential approach for

solving this problem to the satisfaction of both the Prover and the Verifier is a hardware-

374 As with all agreements in this section, an agreement with this goal is currently a distant hypothetical, since
the international debate on weapon autonomy has shifted from a technical focus to a socio-technical focus. More
recent discussions frame autonomy from the perspective of whether the operation of the systems remains within
a responsible chain of human command and control. See ‘Guiding Principles Affirmed by the Group of Gov-
ernmental Experts on Emerging Technologies in the Area of Lethal Autonomous Weapons System (Annex III)’
(United Nations Office of Disarmament Affairs: Convention on Certain Conventional Weapons (CCW) - Group
of Governmental Experts on Lethal Autonomous Weapons Systems, 2019).

375 Paul Scharre and Megan Lamberth, ‘Artificial Intelligence and Arms Control’ (The Center for a New American
Security, 12 October 2022), https://www.cnas.org/publications/reports/artificial-intelligence-a
nd-arms-control; Vincent Boulanin and Maaike Verbruggen, ‘Article 36 Reviews: Dealing with the Challenges
Posed by Emerging Technologies’ (Stockholm International Peace Research Institute, 2017), p 17–24.

376 Very speculatively, the running device will emit Van Eck radiation in a way that allows the specific running
software to be verified. It remains unclear whether this mechanism can be used to verify running models in sen-
sitive applications such as AI weapons (especially if a state is trying to trick you), and it also requires the hardware
to be active in order for the radiation to be detected. See Matthew Mittelsteadt, ‘AI Verification: Mechanisms to
Ensure AI Arms Control Compliance’, February 2021, https://cset.georgetown.edu/publication/ai-ver
ification/.

377 An ideal mechanism would allow the retrieval of a verifiable fingerprint for a model even if the device has
been damaged somewhat (e.g., battlefield wreckage). Note in this case the model itself should not be retrievable
from the device wreckage—thus requiring some kind of ledger (see Appendix L.5) or an encrypted model as
discussed under the heading “Device mating with an encrypted model”.
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backed private key on the device (perhaps backed by a battery and PUF) coupled with a

verifiable process for loading the model onto the hardware.378

• Greenlighting: Chips used in the devices can be of a type that require licenses (see Ap-

pendix L.2), thus allowing the Prover to demonstrate to the Verifier that the licensed

model is compliant, and that the license pertains to precisely the declared chip that

is installed in the device. For more about greenlighting model inference, see Sec-

tion 4.5.2.3.5. Note that reliable licensing systems are not yet available for chips, making

this a speculative approach.

• Devicematingwith encryptedmodel: Speculative hardware features allow for a model

to be installed onto a device in a way such that 1) the model cannot be feasibly copied

to run on other hardware, and 2) the hardware cannot be repurposed to run a differ-

ent model. In theory, such a mechanism would allow more certainty that models and

hardware are not being repurposed outside of the verification setting. Note that this

goes beyond the licensing proposal described above, because the device-model mat-

ing approach presumes that copying the model to use elsewhere is disallowed within

the agreement—even for the Prover.379 Note that this approach would disallow model

updates, which is a major technical and political issue, given that software updates are

commonly employed and can also be frequent.

4.5.2.3.6.d Prove that device usage is compliant

This category of approaches for regulation and verification presume that rules about the us-

age of the device are the central concern for regulation. This differs from the above sections,

which discussed constraining the capabilities of the device, either through hardware limita-

tions or model checks.

• Rules-based on-chip governance: On-chip mechanisms enforce (simple) rules about

model behavior (see Section 4.5.2.3.3). The chip could cease to function or function with

lower capabilities if the rules are violated.380 There are three major challenges with this

approach: 1) evaluations increase computational load, which might be intolerable on

378 To safeguard the model from the Verifier, it must be encrypted in a way that renders it unavailable to the
Verifier even if they gain physical access to the device (e.g., battlefield wreckage). It may be possible to use a
verified physical process—conducted within a hardware verification facility—to load the model (and confirm the
model fingerprint is the expected value established via previous governance processes—see Section 4.5.1) and
then record the new model fingerprint generated by the device hardware after the model has been encrypted
using the device’s private key. The device hardware private key could be generated by a PUF mesh and potentially
backed by other logic run by a battery, thus allowing the Prover to know that the key will be destroyed if the device
is damaged or loses power. Overall, this allows the Verifier to be certain that the correct model was loaded and to
later check whether the fingerprint of the loaded model matches the expected fingerprint—all without revealing
the plaintext model to the Verifier.

379 Such a scheme might be implemented in something like the following way: 1) A model is created and doubly-
encrypted by the Prover and Verifier (see Section 2.2.4.7.1) before then going through verification checks (see
Section 3.5). 2) The model is embedded into the device in a secure facility that is mutually verified by the Prover
and Verifier, thus demonstrating that no other copies were made (see Section 2.5.4.3). The actual hardware design
of such a device is highly speculative—see Appendix K for a more in-depth exploration.

380 One related example is how consumer-grade global positioning system (GPS) devices must shut down if
they violate speed and/or altitude rules that prevent them from being used in weaponry such as intercontinental
ballistic missiles.
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military hardware, 2) evaluation content would be on the device itself, thus revealing

it to the Prover and allowing the Prover to circumvent its safeguards, and 3) reduced

function of devices might not be a tolerable outcome for high-reliability organizations

(e.g., critical infrastructure) or security organizations such as militaries.381

• On-chip logging with neutral offline analysis: The chip logs key information, which

allows a neutral analysis to later verify that all rules were followed (Section 3.6.1). One

variant of this idea employs cryptographic commitments to allow the Prover to commit

to information long before they reveal it at a time and place of their choosing.382 It is

unclear how much storage would be required for this data on the device itself, and it is

very possible that full storage requirements would be impractical.383 Other proposed

implementations of this approach have data storage centralized within military facili-

ties, thus solving the data size challenge but raising further questions about whether this

data represents the true operational data for the machine.384 Overall, these approaches

presume that the Prover wants to demonstrate compliance eventually, but is unwilling

to do so during the operation of a device or even during the duration of a conflict (see

also Section 4.5.2.3.5.d).385 Finally, it should be noted that even though the plaintext in-

formation is not revealed until some later time, the cryptographic commitments could

in theory be sent much earlier, perhaps even automatically as a continuous part of the

operation of all devices.386 Therefore, while full scrutiny must wait, the Prover is able

to significantly constrain their own ability to circumvent compliance checks without

being noticed.

4.5.2.3.6.e Summary: Governing AI-enabled weapons

This section has considered four general approaches for verifiably governing mobile AI-

enabled devices, with an emphasis on their workability in extremely sensitive contexts,

such as the governance of AI-enabled weapons. The approaches discussed in the first two

381 If automated shutdown is politically unworkable for key institutions, it is unclear whether such rules could
have automated enforcement of any kind for those institutions. Therefore, this approach might only work for
other less sensitive kinds of devices and completely different approaches must be used for devices employed by
these more sensitive organizations.

382 Marc Gubrud and Jürgen Altmann, ‘Compliance Measures for an Autonomous Weapons Convention’ (Inter-
national Committee for Robot Arms Control, May 2013), https://www.icrac.net/wp-content/uploads/201
8/04/Gubrud-Altmann_Compliance-Measures-AWC_ICRAC-WP2.pdf.

383 Consider in particular the idea of systems with substantial endurance, with autonomous deployments rang-
ing from months to years.

384 A key concept for all of these storage schemes is ensuring that the Prover would not be able to easily change
the cryptographic commitments after they have been laid down in storage. The same does not apply to the
full-text storage, which can take place on commodity hardware since the verification process flows through the
cryptographic commitments and thus it is the responsibility of the Prover to ensure that they can bring the true
data to match the cryptographic commitment when they demonstrate their compliance.

385 Further concerns about this kind of proposal can be found in ‘Verifying LAWS Regulation - Opportunities
and Challenges’ (International Panel on the Regulation of Autonomous Weapons, 2019), https://nbn-resolvi
ng.org/urn:nbn:de:0168-ssoar-77413-1.

386 To avoid the security issues inherent in sending a data stream that tells others how many devices you are
operating, transmissions could either be continuous for all devices other than their downtime or could be bun-
dled and delivered on a day or week basis to avoid revealing information about the deployed fleet. Furthermore,
cryptographic schemes also easily allow for complex data structures such as a Merkle tree to be committed to,
thus providing commitments for many devices without either the plaintext information or the number of devices
being revealed initially to the Verifier.
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subsections—limiting onboard computational control (Section 4.5.2.3.6.a) and limiting hard-

ware capabilities (Section 4.5.2.3.6.b)—appear to be technically possible but it is unclear

whether they can be accomplished in a way that states will tolerate. The crucial problem

with both approaches is that nearly any possible detail about the design of a weapon can in

theory be used by an adversary to devise efficient countermeasures. If privacy-preserving

methods could be created for both the evaluation of sensitive weapons designs and the in-

spection of hardware, then these categories of verifiable governance might be workable. At

present, such methods appear to be speculative but theoretically possible.

By contrast, only speculative approaches appear workable for the dual challenge of 1) prov-

ing that an AI model is compliant with governance rules and then 2) proving that the compliant

model is actually embedded in the device. The least speculative approach described here involves

verifiably loading the model onto a device in a way that allows the device to encrypt the

model with its hardware-specific key, and then fingerprinting the loaded model. Such a pro-

cess would allow the Verifier to be sure that the model was loaded and to later test devices (in-

cluding potential device wreckage) to prove that the loaded model was unchanged—all while

disallowing the Verifier from seeing the plaintext model. The specific hardware mechanisms

and verification facilities required for this approach are not known to have been created yet,

and their feasibility remains very uncertain. Optimistically, it might be possible to create

these with several years of focused effort.387

The final category of regulation is the most challenging: proving that device usage is com-

pliant. While highly speculative future technologies might allow rules-based on-chip gov-

ernance, the technical and political issues with that approach are substantial. A logging-

centered approach has also been proposed for allowing states to demonstrate that their

weapons are used in ways which are compliant with widely-held interpretations of appli-

cable rulesets or legal regimes, potentially including international humanitarian law and

international human rights law.388 This proposal involves no speculative technologies but

would likely require some minor reworking of data flows. The political crux for this form

of governance is whether the evaluation of compliance could be privacy-preserving or oth-

erwise security-preserving for the state. An ideal governance system would employ privacy-

preserving computational operations on the logged data (including the full context for the

weapon’s use) to demonstrate compliance with the rules. No other states or their human

agents would be able to see the plaintext data. If such computational verification approaches

could be devised, they could be a key part of a robust verification regime built around govern-

ing the use of AI-enabled weapons. This is likely to be an extremely challenging technical

problem due to the difficulty of operationalizing legal requirements and for the technical

and epistemic reasons explored elsewhere in this work (e.g., Appendices D and F). If states

387 The claim about several years of effort is a very rough estimate based on the analysis provided in Sec-
tion 4.5.2.3.6.c and a roughly similar timeline described for a sensitive PUF-protected digital system described
in James Petrie et al., ‘Interim Report: Mechanisms for Flexible Hardware-Enabled Guarantees’, 23 August 2024.

388 Marc Gubrud and Jürgen Altmann, ‘Compliance Measures for an Autonomous Weapons Convention’ (Inter-
national Committee for Robot Arms Control, May 2013), https://www.icrac.net/wp-content/uploads/201
8/04/Gubrud-Altmann_Compliance-Measures-AWC_ICRAC-WP2.pdf.
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can agree on rules which are amenable to this form of verification, they may be able to avoid

the need for human evaluators to see the data (see Section 3.5).

However, in lieu of a fully privacy-preserving technical stack of this kind, human evaluators

would be needed and would therefore expose the Prover to at least some security concerns,

since the human evaluators would certainly learn things about the Prover’s operations, per-

sonnel, and equipment which are not strictly required for demonstrating compliance, and

such knowledge could be used against the Prover. The political ramifications of this are un-

clear and may be contingent on other aspects of the proposed verification regime, such as

the time delay between operations and verification. Verification taking place even years after

the use of an AI-enabled weapon might serve a political purpose, such as deterring some in-

appropriate uses of the technology, or helping solidify emerging legal norms. However, it is

unclear whether the revelation of sensitive information would be tolerable to states even in

such circumstances. Equally, other states might have much less trust in a verification system

that allows a Prover to significantly delay their demonstration of compliance. The answers

to political questions like these will shape the viability of this form of arms control.

126



5 Conclusion

This report reviewed several families of potential international agreements regarding AI. It

found that some of these agreements appear to be highly verifiable today while others face

significant verification challenges. Those agreements which resemble prior or existing inter-

national agreements tend to be at least somewhat verifiable, even if they were implemented

immediately. Agreement types with few prior analogues—such as regulation of AI develop-

ment or deployment—face more significant challenges. For this latter category, near-term

verification mechanisms might be workable for lower-sensitivity domains such as civilian

AI, but these are less able to address the more severe transparency-security tradeoff for high-

sensitivity organizations such as militaries. Concerted effort by key states and other actors

over the next several years may be able solve these problems, thus opening up political op-

tions for states to make deals over AI.

Agreements that are at least moderately verifiable today include agreements which relate to

the transfer or pooling of knowledge or resources. The verifiability of most of these agree-

ments is primarily limited by the receiving state’s ability to credibly demonstrate to the send-

ing state that resources will be appropriately used after transfer. Outside of general politi-

cal alignment, it is very difficult for the receiving state to credibly demonstrate that their

personnel and equipment controls are systematic and sufficient, thus making it difficult for

sending states to believe that their transfers will not be copied, sold, or diverted to undesired

uses. Other aspects of these agreements can be built atop more robustly verifiable hardware-

enabled commitments in key infrastructure such as data centers. With a few years of effort,

a wider array of states might plausibly be poised to make hardware-centric credible claims

of this kind, thus opening new economic and political opportunities for these states as well

as the AI-exporting states that might seek to work with them. In the long run, more aspects

of these agreements can be subjected to privacy-preserving digital verification as that infras-

tructure matures, thus allowing the technical possibility of increasingly robust verification

over time.

The three remaining categories of agreements—preparing for emergencies, regulating AI de-

velopment and inference, and regulating AI-enabled mobile devices—are significantly more

challenging. There does not appear to be an immediately workable plan for robust verifica-

tion of any of these agreements. However, the prospects for these different domains differ

in the coming years. While the verification of regulations for AI-enabled mobile devices

such as weapons should be expected to remain very politically difficult even with technical

advances, the verifiability of preparing for emergencies and regulating AI development and

inference can be advanced enormously through the development and deployment of a set

of hardware-enabled mechanisms. Counterintuitively, the technology needed for verifying

these latter kinds of agreements appears to be broadly available today, but deploying these

capabilities in a cooperative manner to build verification systems will likely require major
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political and logistical efforts. A “crash program” to provide politically workable levels of

verifiability for a small number of key data centers might take about one year to complete,

and more robust verification systems that cover more compute will likely take between one

and three years of intense effort to implement. On a positive note, while regulatory verifi-

cation of this kind seems difficult to build, once it has been built it then has great potential

to enable scalable, privacy-preserving, and fine-grained verification of a large category of

computations. This opens up new frontiers in verification in general, since it is often possible

to transform verification questions centered on physical objects into verification questions

that are represented digitally (e.g., via sensors and cameras).

Preparation for verifiability is a key technical and political priority for most of the agree-

ments described in this report. Given the potentially large impact of near-term research,

development, and policy action, the following subsections will highlight the areas that ap-

pear most valuable for further work.

5.1 Research anddevelopment of particular importance

Further (and urgent) development of nascent and prospective technical verification mecha-

nisms may be crucial for the success of international AI governance. It is important for the

reader to realize that work on AI verification is in its infancy. While AI verification depends

on several mature fields of study, the overlapping challenges of the verification problem

mean that further work on AI verification should be expected to significantly improve our

understanding. It is helpful to recall that technical work on nuclear arms verification was un-

dertaken at significant scale for many years before it was employed in key agreements such

as the INF Treaty.389

While verifiable methods for aggregate and approximate measures of strategic variables such

as compute are available and relatively mature, this report mainly explored verification

schemes that could potentially examine much more detailed information in a way that is

still compatible with state security.

The central technological crux of this report is the realistic viability of privacy-preservingmethods

for verification. In particular, this report focused heavily on verification mechanisms with

the realistic ability to verify that digital objects follow stated rules—precisely and completely.

“Precisely” here means that the granularity of governance rules can apply all the way down

to each byte of information. “Completely” here means that governance rules might apply

across many computations on many different pieces of hardware, potentially even located in

different countries. In sum, this report emphasized approaches that could possibly claim to

achieve high-fidelity visibility of regulatory compliance at vast scales—all while remaining

technically, economically, and politically viable.

To this end, two technical approaches for achieving verifiable confidential computing were pro-

posed, each aiming to allow the Prover to protect their private data while also allowing the

389 Toivanen, ‘The Significance of Strategic Foresight in Verification Technologies’.
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Prover to demonstrate precisely what they did in their computations—at a time and place of

their choosing. First, hardware-enabled mechanisms similar to confidential computing ap-

pear to be capable of embodying all of the information exchanges needed. The crucial areas

of further work on confidential computing relate to its robustness and security. In particular,

are the hardware roots of trust in existing chips sufficiently robust to support governance

needs, or will additional mechanisms need to be added to shore up crucial cybersecurity or

physical security? Moreover, can a neutral mutually verified data center be realistically built,

maintained, and used for extremely sensitive verification computations? “Crash program”

versions of the approach might be viable, since confidential computing mechanisms already

exist on some of the most advanced AI-specialized computing chips. Further exploration of

this possibility and its limits appears warranted.

Second, hardware-enabled mechanisms can potentially be installed on networking hardware

and enclosures (particularly at the pod scale, where dozens to hundreds of chips work to-

gether on tasks) to provide cryptographic commitments which in turn allow for credible ver-

ification computations to take place within a neutral mutually verified verification facility.

Can relatively simple hardware allow for a credible flow of cryptographic commitments to

the Verifier in a way that robustly protects the security of the Prover? Key questions remain

about how the cryptographic commitment scheme can be made robust within either exist-

ing or newly built hardware. The relative maturity of both core technologies—networking

hardware and cryptographic commitments—should provide a strong basis for work on this

front, but the abilities of this type of stack remain speculative, as it does not yet exist and will

not come to exist without further research, engineering, and policy effort.

Both of these schemes depend on a few fundamental capabilities, including 1) a neutral mu-

tually verified data center that is running something like confidential computing and 2) the

ability of each side to continuously monitor the activities within these facilities in a way that

adequately convinces them that no attacks on the hardware in the facility are taking place

locally (launched by either their counterpart or a third party). It is not yet fully clear that

building such a facility is possible, or on what timeline it could be accomplished. It is also

not clear how a highly secure facility can also be continuously monitored in a way that pro-

vides extreme levels of cyber and physical security. In particular, the advantages and limits

of various parallel information streams need to be explored, including monitoring via video

cameras, electric power systems, acoustic monitors and accelerometers, and other electro-

magnetic spectrum sensors.

Given that this discussion is in the early stages, further work should also explore

whether there are realistic options for verifiable confidential computing beyond the two

described above.

More broadly, further research appears warranted in five other domains. First, containerized

data centers have been proposed here as a way to address some of the security concerns

of particularly sensitive institutions such as militaries. Further work should examine this

understudied category of ideas. Second, further work should be done on privacy-preserving
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verification for hardware developers such as NVIDIA and TSMC. Is it possible for them to

credibly demonstrate that their work adheres to strict and testable rules without revealing

any trade secrets? More narrowly, could even an open source chip design be fabricated on

sensitive hardware in a way that is verifiable so that all actors can be assured that no changes

were made to the design? Presuming that all other efforts fail, what are the prospects and

limits for cooperative hardware design and construction employing open source designs and

only trailing node fabrication hardware?

Third, presuming that a system like confidential computing is workable, can such a system be

used to provide robust answers for algorithm governance and the “Who watches the watch-

ers?” problem? Algorithmic assessment seems necessary in order for the Prover to demon-

strate that they are not circumventing an agreement via techniques such as password-locked

capabilities. The “Who Watches the Watchers?” problem refers to the challenge of verify-

ing the code that purports to be doing verification for another actor. While the full details

of evaluation data should not be revealed to the Prover, they are likely to demand to know

that evaluations are actually aimed at their declared purpose and not some secret other pur-

pose. In sum, verification will be needed for the tools of verification themselves, including

aspects of those tools which cannot be shown to the counterparty. Can the techniques of

privacy-preserving computation—such as mutual code review, selectively hidden evaluation

content, and arbitrary numbers of nested evaluations—solve this problem in general? One

specific idea worth exploring is whether open source and open data evaluations can be de-

veloped which can be regarded as a “ground truth” for claims about what other evaluations

are actually aiming to accomplish. These open and thus mutually verifiable evaluations (or

meta-evaluations) might then be used to provide credible checks on the behavior of other

evaluations which have hidden content.

Fourth, can techniques like confidential computing allow for the privacy-preserving veri-

fication of declarations about electrical power networks? It would be ideal if Provers could

demonstrate that their electric grid is compliant with a set of claims—for example, that there

are no hidden data centers—without revealing the details of their grid to the Verifier. Mean-

while, it would be ideal for the Verifier to be able to test whether the Prover’s declarations

actually comport with the Verifier’s best understanding of the Prover’s grid. Presuming hon-

est actors, this verification computation might be trivial; but honesty cannot be assumed.

Can a mechanism be designed to accomplish this governance goal without revealing to ei-

ther party what the other knows?

Fifth, zero-knowledge proofs for AI verification should continue to be explored. Major ad-

vances in this domain have the potential to completely upend the technological frontier of

verification and thus provide far more political options to states.

5.2 Policy action of particular importance

When states are better able to verify agreements, this can open up political space for mutually

beneficial bargains. Equally, however, failure to develop verification abilities can lock states
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into equilibria that they dislike. The recommendations described below assume that the

AI industry will continue to rapidly evolve, with significant ramifications for all states. It is

further presumed that state governments are interested in keeping some room to maneuver

in this rapidly changing world, and thus will be interested in developing their ability to both

verify the behavior of their peers and be verified in turn.

Paradoxically, cooperative verification requires that some policy actions be taken unilater-

ally, while others must be undertaken in collaboration with the other states who might wish

to be part of a governance regime together. Generally, the structure and infrastructure of

verification interactions must be developed cooperatively, while other preparations must be

developed unilaterally—and some components of verification systems should be kept secret,

such as the detailed content of digital evaluations.

Unilateral policy action can support the development of verification in at least five important

ways. First, any institution can support research and development regarding the key issues

identified in the section above—thus improving the general level of knowledge in this space

and allowing policymakers to be better informed in their future decisions. Second, any in-

stitution can support the open source development of standards, evaluations, and technical

stacks which can enable verification. States can accelerate development and rollout of stan-

dards by ensuring that their domestic AI regulations are designed to integrate with a stan-

dard. Industry players may want to support the rapid design and rollout of such a scheme

to increase the probability that governance rules will be interoperable among the different

jurisdictions they do business within. Third, any institution can create incentives for serious

scrutiny of the technical foundations for verification, including the funding of large “bug

bounty” systems to incentivize external scrutiny of proposals. Fourth, states should develop

their own evaluations and keep at least some of their detailed content secret. These evalua-

tions should not be limited to those intended for examining completed models; they should

also include techniques for examining other digital aspects of the AI ecosystem, including

training data and inference exchanges. Fifth, states should avoid co-locating AI development

and inference infrastructure with other sensitive assets such as cutting-edge weaponry or the

infrastructure for producing or maintaining that weaponry. In the future, states may want

to mutually verify each other’s data center-scale AI hardware, just as the Cold War super-

powers found that they needed to be able to inspect specific sites as they implemented the

INF Treaty. If AI hardware and other sensitive assets are located together, otherwise work-

able verification plans might be rendered infeasible due to security sensitivities, or rendered

highly inefficient due to the need to rapidly move infrastructure to less sensitive locations.

To avoid these potentially significant costs, it seems prudent to embed this as a policy today

and apply it as broadly as reasonably possible.

Cooperative policy action can begin in three ways. First, states should seek to track crucial

inputs such as AI-specialized chips. Even if this knowledge is kept siloed for now, collecting

it is robustly valuable for future agreements which might need to broadly account for AI-

specialized compute. Second, states should allow academic and civil society actors from all

states to discuss the technical aspects of verification with an eye toward achieving common
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understanding of the technical outlines of the problems and their possible solutions. Such

conversations can take place more robustly if states explicitly carve out political space for

them. Third, it is advisable for states to begin monitoring the emerging discussions about AI

verification and consider how and when they want to engage with other states on these topics.

The rapid changes in the AI ecosystem mean that progress in both the political and technical

spheres may be rapid—so states may have to make meaningful efforts to stay informed about

these issues.
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Appendix A: Verification of personnel controls

Verifiable controls on personnel include verifiable processes, physical controls, digital con-

trols, and legal controls. Verifiable processes include personnel recruitment, onboarding,

and management techniques such as institutional hierarchy, background checks, and exclu-

sion from parallel employment. Physical controls include location, travel, and contact lim-

itations.390 Digital controls include rigid rules on usable electronics and software.391 Legal

controls include laws against the sharing of particular kinds of sensitive information or laws

requiring particular kinds of action.392

For each of these types of controls, verification would require a Prover to make itself legi-

ble enough to a Verifier to be able to claim that these controls are actually implemented. In

general this is an extremely difficult problem, since complex institutions like states have the

capacity to affect outcomes in many ways and they typically do not have available means for

disavowing the use of such capacities. For example, a Prover might provide voluminous de-

tails about a personnel management technique to a Verifier, but then covertly influence the

behavior of personnel though additional measures such as loyalty tests and threats (see Sec-

tion 1.5.2). In some cases, techniques for such restraint are possible, but politically difficult—

such as extreme limitations on personal liberty within liberal countries. In other cases, such

techniques would provide too much information to the Verifier and thus run afoul of the

transparency-security tradeoff (see Section 1.5.1.1).

A more speculative idea is using complex digital systems such as AIs to monitor personnel.

In theory, appropriately trained AI systems with extensive access to the activities of the per-

sonnel in question might be capable of assessing whether or not those activities are in com-

pliance with an agreement. The key problem with this approach is similar to the approaches

described above: while it is easy to provide information to a verification process, it is diffi-

cult to prove that the information is complete (see Section 1.5.2). The potential answers to this

problem—such as continuous AI-powered monitoring of all key personnel and systems—

still require proof that these particular personnel and systems are the only ones that could

reasonably violate the agreement. Furthermore, given the potentially drastic security costs

of continuous monitoring of personnel, it is unclear whether such a scheme could ever be

capable of successfully navigating the transparency-security tradeoff. Automated systems

with complete access to the sensitive activities of key personnel would be an extraordinarily

390 All of these have been employed in government programs such as the Manhattan Project. Mario Daniels,
‘Controlling Knowledge, Controlling People: Travel Restrictions of US Scientists and National Security’, Diplo-
matic History 43, no. 1 (2019): 57–82.

391 Limitations on which devices can be used for sensitive work are commonplace in both industry and govern-
ment. Similarly, many organizations have the ability to monitor or automatically enforce limitations on software
on managed devices.

392 Unauthorized sharing of state secrets is often illegal. Hitoshi Nasu, ‘State Secrets Law and National Security’,
International & Comparative Law Quarterly 64, no. 2 (2015): 365–404.
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valuable target for cyberattacks and espionage, and the security consequences of a breach

could be substantial.

The prospect of widespread monitoring of key humans also raises the question of whether

verification effort might be better spent building comprehensive monitoring of digital sys-

tems such as those that are used to create or run AI models. While a complete accounting

of all humans who could know a fact is extremely difficult, a similarly complete accounting

of all cutting-edge AI hardware is comparatively easy. Moreover, many of the systems em-

ployed for AI development or deployment—such as power and networking hardware—are

very simple compared to a human. Meanwhile, open-ended computational systems such as

processors and the software running on them can have some forms of simplicity imposed on

them through rules. Most of this report expands on these themes and therefore emphasizes

the potential for verification via the monitoring of digital systems rather than humans.
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Appendix B: Verification of claims centered on

access to personnel

Two kinds of access to personnel are discussed here: interviews and whistleblower programs.

The related topic of personnel controls is discussed above, in Appendix A.

Interviews have the potential to provide information about the compliance of the Prover’s

organization. The usefulness of interviews hinges on whether the people being interviewed

actually know compliance-related knowledge and whether they want to reveal it to the Veri-

fier. A verification agreement might stipulate that personnel are obligated to tell the truth to

the Verifier’s agents, but that alone is not sufficient reason to believe that the truth will indeed

be told. As explored in the discussion about personnel controls above (see Appendix A) and

the discussion of whistleblower programs below, the Prover typically has significant power

to ensure that most people who would know about agreement violations would not be avail-

able for the Verifier to interview—and equally ensure that those who do know would be

loyal. Furthermore, interviews are a relatively blunt instrument that is likely to run afoul

of the transparency-security tradeoff in high-stakes circumstances—and therefore a robust

interview-based mechanism would never be agreed to. In a high-stakes domain, the acci-

dental or inadvertent revelation of security-relevant information would potentially be very

damaging to the Prover’s perceptions of security. However, in low-stakes environments, the

ability to interview people across a relevant organization could be more than sufficient for

the Verifier to achieve relatively high certainty that actions are being taken in compliance

with the agreement. This dichotomy hinges on the relative stakes, since extraordinary cir-

cumvention efforts can be expected only in high-stakes scenarios.

Whistleblower programs have been previously discussed as one of the ways that a complex

institution such as a state can make verification credible.393 For example, consider a scenario

where a Prover designs a whistleblower program that ensures that a designated group of peo-

ple are a) guaranteed to know information that relates to certain verification questions, b)

each, separately has a regular opportunity to “blow the whistle” via travel to a credible neu-

tral facility where they can provide credible information about the Prover’s compliance.394

Such a scheme could in theory ensure that the people who know crucial things about the

Prover’s compliance will regularly be put into a neutral secure location in which they will

393 Akash R. Wasil et al., ‘Verification Methods for International AI Agreements’, arXiv.org, 28 August 2024, ht
tps://arxiv.org/abs/2408.16074v1; Akash Wasil et al., ‘Understanding Frontier AI Capabilities and Risks
through Semi-Structured Interviews’, SSRN Scholarly Paper (Rochester, NY: Social Science Research Network, 1
July 2024), https://doi.org/10.2139/ssrn.4881729.

394 One approach would be to allow the whistleblower and their family to gain permanent sanctuary in a non-
aligned third party state. Another approach would be to allow large groups of whistleblowers to interact with a
digital system over many days, with the resulting data only produced at the end in an anonymized fashion, so
that the specific whistleblower could not be directly identified from the resulting data.
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personally be able to tell the truth about the Prover’s compliance without fear of retaliation

from the Prover.

While such a whistleblower scheme may indeed be possible and useful, to be effective at ver-

ifying activities that are central to a state’s security, the scheme would have to overcome a set

of interrelated challenges. Presuming that the transparency-security tradeoff is not violated

by the goals of the whistleblower program (see Section 1.5.1), the program must ensure that

the Verifier has a high enough probability of catching a violation while simultaneously ensur-

ing that as little extraneous information as possible is transmitted to the Verifier. Minimizing

information transfer might lead to a theoretical ideal such as a single bit being transferred

from each individual who enters the neutral secure location—with many such bits aggre-

gated together before they are reported to both the Verifier and Prover.395 However, even in

such a scenario, the Prover has plenty of opportunity to circumvent verification. It can hide

problematic activity from the set of people who are part of the whistleblower program.396 It

can ensure that potential whistleblowers are loyal (and would therefore be unlikely to blow

the whistle). It can (privately) intimidate whistleblowers into silence by threatening them or

their loved ones.397 The Prover’s open-ended action space with regards to its own personnel

and their connections means that verifying the lack of such actions is likely intractable (see

Section 1.5.2).398 In short, the Prover’s room to maneuver with regards to its own personnel

might put nearly any whistleblower program at risk.

Addressing the potential shortcomings in the design of whistleblower programs is a worthy

goal.399 This brief discussion outlined only a few of the key challenges they face. For the

purposes of the remainder of this report, it will be assumed that whistleblower systems can be

useful for verification in relatively open domains such as academic research in open societies

but not for closed domains such as the regulation of militaries or secret government projects.

395 Other proposals tend to have a much more severe transparency-security tradeoff. Interviews might reveal
a lot of extraneous information to the Prover even if the interview questions are structured relatively tightly.
Physical defection of a whistleblower to the Verifier’s institution could lead to the revelation of every key secret
known by that person. The risks of these outcomes would shape whether the states involved would agree to
these mechanisms.

396 Addressing this might be possible via extensive controls on—and verification of—digital infrastructure, which
could allow high certainty that specific personnel were shown specific information at a specific time. Such digital
controls might be highly compatible with the regulatory verification proposals discussed later in this report.

397 Potential whistleblowers might be led to believe, for example, that the Prover would be able to figure out
who specifically blew the whistle or would simply retaliate against all potential whistleblowers. The former
problem is a risk even if the Verifier employs very strict information security protocols since the Prover might
be able to learn some of that information via its intelligence apparatus and therefore reveal the identity of
the whistleblower.

398 Moreover, drastic efforts to corral this complexity—such as through the revelation of large amounts of infor-
mation about the activities and connections of all relevant personnel—are likely to run into a severe transparency-
security tradeoff. For example, even revealing the specific location of each person’s home or workplace via such a
process might be a concern for national security, as these may be security-relevant facts for people in important
roles or working in important institutions.

399 Forthcoming work (“Verifying International Agreements on AI” by Mauricio Baker and others) examines this
question in detail.
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Appendix C: Best practices in verification

C.1 Agreement content that makes verification easier

The content of agreements can also facilitate their verification. Three examples of such con-

tent are worth noting. First, agreements can ban activities that would make verification gen-

erally more difficult. One example of this from the START arms control treaty is the require-

ment that all parties broadcast telemetric information from test launches of missiles in the

clear, thus allowing their adversary free access to that information.400,401 In the AI verifica-

tion domain, one can imagine that guardrails could be installed in agreements to mitigate

particular information problems or other issues. For example, while it might be possible to

saturate the bandwidth of a verification system by submitting too many declarations with

too much complexity, the agreement itself might reasonably prohibit abuse of the system

by rate-limiting declarations or limiting the declaration complexity—or both.402

Second, agreements can explicitly legalize things that enable better unilateral verification.

For example, the Open Skies Treaty legalized unarmed reconnaissance flights over sovereign

territory with the express purpose of providing a means for unilateral efforts to provide bet-

ter and more complete information than would otherwise be available.

Third, agreements can be centered on declarations from each state, thus drastically simplify-

ing the information problems associated with the agreement. Declarations allow verification

efforts to focus on checking whether declarations are correct and complete. As described in

Section 1.5.2, this makes discovering non-compliant behavior significantly easier, since all

that needs to be discovered is a discrepancy with the declaration.

C.2 Gradual implementation

Implementation phases of political deals are often crucially important for the success or

failure of the deal. Examples abound in the history of arms control and the negotiated

ends of civil wars.403 Actors in such negotiations particularly fear sharp shifts in power

against them (see Section 1.5.1). Ensuring that deal implementation phases are sufficiently

granular and reassuring to all sides is a challenging problem that this report does not grap-

400 “The Treaty requires the Parties to broadcast telemetric information during flight tests of ICBMs and SLBMs
and generally to refrain from any activity that could deny the other Party full access to such information.”

401 ‘Strategic Arms Reduction Talks (START) Treaty’, United States Office of the Assistant Secretary of Defense,
20 November 1991, https://www.acq.osd.mil/asda/ssipm/sdc/tc/start1/start1-aaa/START1lett-sub
.html.

402 This might be particularly relevant to those parts of the verification system that do not scale up easily, such
as inspectors and neutral mutually verified compute capacity.

403 Barbara F. Walter, Committing to Peace: The Successful Settlement of Civil Wars (Princeton University Press,
2002).
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ple with. The remainder of this section describes a few techniques that are useful for

gradual implementation.

Cryptographic escrow allows a party to commit to a piece of information (such as the loca-

tion and composition of sensitive facilities) without revealing that information to anyone.404

Later, they can reveal parts of the information at times of their choosing—or in response to

specific challenges. This allows for the sequential / gradual revelation of specific information

to relevant parties.405 Furthermore, due to its digital nature, the time lag between commit-

ment and revelation can change over time, thus allowing an agreement to begin with delayed

revelation and move very gradually toward immediate revelation. Used appropriately, this

can alleviate security concerns of a rapid power shift due to revealed information. The po-

litical danger of an escrow without any (ideally random or adversarially targeted) revelation

of its contents is that it could be some kind of lie—and the time delays in the escrow process

might mean that the lie is not detected until much later.

Initial exemptions allow certain activities to be exempted from scrutiny, at least initially. Per-

haps a small number of AI workloads or sites can be exempted from some kinds of scrutiny

by request of the state. Only a certain number of such exemptions should be allowed, and the

relative frequency and size of these exemptions may also provide information to other ac-

tors about what is being done (e.g., the proportion of compute going to military AI). Perhaps

these limits can be evolved over time to gradually tighten the regime.

Delegation can allow verification processes to be shifted between second-parties and third-

parties (see also Section 3.7.1). Verification could potentially begin with third party verifica-

tion and transition over time to second-party verification. For example, credible third parties

at arms length from the Verifier and Prover might be the first parties with a direct hand in

verification processes such as inspections. After a spin up period, the agreement could shift

toward more direct verification. To make this transition smoother, a cryptographic escrow

(see above) could also be used to control when the second-party information (e.g., inspector

reports) is revealed, and that time delay can gradually be changed until the second-party

verification has fully replaced the third party. Alternatively, verification could potentially

begin with second-party verification if a third party such as an international institution is

not yet available. Later, once that institution is available, verification responsibilities could

be shifted to it.

C.3 Learning and iteration

Verification mechanisms (and their associated agreements) are often imperfect to begin with,

but can improve if iterated upon. For example, crucial parts of nuclear arms control agree-

404 Sébastien Philippe, Alexander Glaser, and Edward W. Felten, ‘A Cryptographic Escrow for Treaty Decla-
rations and Step-by-Step Verification’, Science & Global Security 27, no. 1 (2 January 2019): 3–14, https:
//doi.org/10.1080/08929882.2019.1573483.

405 This scheme typically employs cryptographic commitments for the escrow.
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ments required iteration in order to successfully fulfill political objectives.406 Since the AI

industry is largely private, there is potential for companies to resist verification via lobby-

ing, moving their supply chains, and tweaking their standards to manipulate what falls un-

der the verification requirements. For example, NVIDIA built multiple new kinds of GPUs

specifically for the Chinese market after the United States placed limits on their ability to

sell to China.407 Actions such as these by market actors should be expected, as they are in-

centivized to take advantage of economic and political opportunities provided to them by

states. From the vantage point of governance processes therefore it makes sense to ensure

that governance and verification regimes can iteratively evolve their rules as the contours of

the challenge evolve and as new issues are discovered.

C.4 Keep AI infrastructure away from sensitive sites

when possible

The computational hardware at the heart of AI-specialized data centers is sensitive in some

regards but not in others. One domain in which it is not sensitive is to a human inspector

walking by as they assess the facility for compliance. By contrast, other kinds of assets—

such as high-tech weaponry or cutting-edge industrial equipment—are extremely sensitive

to even this kind of inspection.408

Since physical inspection of AI data centers may be a key part of a hardware-enabled verifi-

cation scheme, it therefore makes sense for states to avoid co-locating AI infrastructure with

sites or assets that are too sensitive to allow inspectors near. While some proximity might

be inevitable, it makes sense to minimize this issue to the extent possible, since this is one

of the most straightforward ways to make AI hardware more inspectable and therefore open

up more room for political deals via verification.

C.5 Additional certainty via compound or

parallel verification

There are two major ways to make the overall verification system more robust than any of

its constituent parts:

1. composing verification mechanism components together to cover for the weaknesses

of each component.

406 Mauricio Baker, ‘Nuclear Arms Control Verification and Lessons for AI Treaties’ (arXiv, 8 April 2023), https:
//doi.org/10.48550/arXiv.2304.04123.

407 Lennart Heim, ‘The Rise of DeepSeek: What the Headlines Miss’ (RAND Corporation, 28 January 2025),
https://www.rand.org/pubs/commentary/2025/01/the-rise-of-deepseek-what-the-headlines-miss.
html.

408 See also Coe and Vaynman (2020); Scher and Thiergart (2024), p 54.
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2. employing parallel verification mechanisms that are independent of each other, thus

making it more difficult for a covert adversary to successfully defect without being no-

ticed.

The following subsections expand on each of these in turn.

C.5.1 Compound verification

If a component of a verification approach has particular weaknesses, it may be possible to

combine it with other components that can address those weaknesses. When combined to-

gether these components (each with its own flaws) can become a broader mechanism that has

fewer vulnerabilities. For example, confidential computing (Section 2.2.4.4) is vulnerable to

attacks that can violate the hardware root of trust within the chips involved. To mitigate this

risk, the chips could be monitored from fabrication through to their installation and usage.

While hardware attacks on the chip’s root of trust would certainly still be theoretically possi-

ble, it would be more difficult for a covert adversary to complete such an attack with physical

monitoring in place.

A necessary complication to this story is that each component may also have a different

implied transparency-security tradeoff (Section 1.5.1) and thus a combination of mechanisms

might impinge on state security more than any one of them alone could have. However,

this effect can also be mitigated through privacy-preserving approaches, such as the method

described in Section 3.5 for verifying properties of digital objects.

C.5.2 Parallel verification

Combining a set of independent mechanisms can also make it more difficult for a covert

adversary to circumvent verification. Presuming that each mechanism is fully independent

of the other, their probability of successful circumvention might be estimated as p = p1p2,

where p1 and p2 are the probabilities of successful circumvention for each parallel mecha-

nism separately, and pc is the probability of an overall circumvention success presuming that

both mechanisms must be defeated. For example, if we have p1 = 0.2 (20%) and p2 = 0.05

(5%), we could infer that pc = 0.01 (1%). Therefore, two somewhat leaky mechanisms can be

used in parallel to achieve more robust overall verification, presuming that their weaknesses

and strengths are independent of one another.

C.6 Transparent infrastructure; secret test content

An ideal verification stack for AI-related digital objects (such as training data, algorithms,

models, and inference exchanges) would involve a combination of fully public and fully pri-

vate components.409 Verification processes, stacks, and infrastructure should be designed

409 Ben Bucknall, Robert F. Trager, and Michael A. Osborne, ‘Position: Ensuring Mutual Privacy Is Necessary for
Effective External Evaluation of Proprietary AI Systems’ (arXiv, 3 March 2025), https://doi.org/10.48550/a
rXiv.2503.01470.
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and built in the open to the extent possible, so that they can benefit from mutual verification,

open scrutiny, and perhaps even substantial “bug bounty” programs intended to uncover is-

sues. By contrast, at least some of the actual content of evaluations—such as the data that

model evaluations use in their tests for AI model behavior—should be kept private. Public

data evaluations might be useful for making some evaluation capabilities available broadly,

but there is a significant danger that an evaluation with public data will become useless as it

allows actors to “teach to the test” as they design circumvention attacks. Therefore, it makes

sense for major actors such as states to have their own privately held evaluations that are

never revealed to any other state or to the public.
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Appendix D: Reliable digital verification typi-

cally requires looking at the whole stack

Making verifiable claims using digital stacks often requires verifying the stack from “the

ground up”. The “stack” is the hardware and software that enables computations to happen

in the desired way. In this report, key portions of the stack discussed include a) data cen-

ter infrastructure, b) networking hardware, c) general-purpose computational devices such

as CPUs, d) specialized computational devices such as AI-specialized chips or GPUs, e) all

associated components of these digital systems, including their memory and internal con-

nections, f) all software running on the system to be verified, including its operating system

and all applications.

Perhaps the central problem with making claims with digital systems is that the credibility

of the claim typically depends on your trust in all the layers of the stack that undergird the

claim.410 For example, if a web page says something, not only do you have to trust the web-

site software involved and the Internet infrastructure intermediating your exchange, you

also have to trust every layer of the stack listed in the paragraph above. Transport security

techniques can make it possible to largely ignore parts of the “top” of the stack, including

communication systems in between the two systems.411 Furthermore, presuming robust hard-

ware integrity, hardware keys can enable remote attestation and confidential computing (Sec-

tions 2.2.4.2 and 2.2.4.4)—though it should be acknowledged that robust hardware integrity

also depends on a stack of its own, including not just physical access to the hardware but its

supply chain (see Section 2.2.3).

Given the emphasis on hardware enabled governance for AI verification (including in this

report), it is instructive to realize that when talking about competent states such as the

great powers, unrestricted physical access to hardware undermines all potential hardware gover-

nance. There is no guarantee that a given state can break the governance systems installed in

hardware provided to them, but there is certainly no guarantee of the opposite. Given that

most hardware and software have been repeatedly demonstrated as having major security

issues in public, it is best to assume that any system that has not undergone extreme levels of

scrutiny—for years to decades—has security vulnerabilities. A corollary to all of this is that

410 The one major exception to this claim are some kinds of cryptographic proofs. Some of these can be verified
as true or valid with absolutely no requirement that you know anything about the system that generated that
proof. In this scenario, you must only trust your own computational system and its ability to check the proof.

411 Presuming that it is possible to recognize the appropriate interlocutor (e.g., via a public key or similar tech-
nique), perfect encryption would mean that data cannot be tampered with although it could be omitted. More
sophisticated schemes can provide some guarantees of both correctness and completeness. Finally, the prospect
of quantum computers has raised the possibility of “harvest now, decrypt later” attacks, where encrypted data
can be saved now and then later (speculatively, years or decades later) decrypted using quantum computers that
exist at that later date. Encryption schemes are now available which should be robust against this attack, but the
most commonly employed schemes today are not.
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supply chain security for hardware is also required for any piece of hardware that cannot be

verified downstream, such as advanced semiconductors (see Section 2.2.3.3).

This is not to say that security is hopeless. It is certainly possible to achieve improving secu-

rity over time with attention, iteration, incentives, and layered mechanisms—as discussed in

Section 2.5.1.
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Appendix E: Algorithm verification

When evaluating the compliance of computational activities such as training or inference,

one of the central concerns is the algorithm being used. Algorithm code can plausibly be the

most sensitive information in the declaration because it embodies many of the AI discoveries

made by the Prover. However, algorithm code is also a pathway by which the Prover might

circumvent regulation to produce a non-compliant model without failing any automated

checks.

One example of a circumvention attempt is algorithm code that makes a model substan-

tially underperform unless provided with a specific password in the query. Coupled with

an algorithmic insight that improves the quality of the model, a training process that locks

most model capabilities behind a password would allow a Prover to demonstrate compliance

(since the capabilities of the locked model might look reasonable to external tests) while in

fact training a model with capabilities that in fact go far beyond what the regulations ex-

pect. Discovering such a password may be possible via inspection of the algorithm code and

automated inspection of the data.

As discussed in Section 3.5, having a human assessor look at algorithm code could be per-

ceived as a substantial security problem by states and should therefore be done sparingly.

Automated assessment tools should be able to check for obvious circumvention attempts, but

it is unclear whether they can be the sole answer to the challenge of algorithm verification.

One particular challenge is that the Prover might also fear that an evaluation of their algo-

rithm could provide important information about their capabilities. For example, imagine

that the Verifier writes an evaluation that checks whether the Prover is employing a certain

algorithm in their code. If such an evaluation were run, the Verifier would learn something

about how the Prover is doing their machine learning. If a suite of such evaluations were run,

the Verifier might be able to learn quite a bit about the Prover’s code.

However, presuming as we do in Section 3.5 that the Prover always retains the ability to

say no to a given evaluation given what they see in its code, we can also suppose that the

Prover will say no to evaluations that would reveal important secrets. Problematically, this

also means that the Verifier might also struggle to convince the Prover that their evaluation

code is reasonable without revealing their code in its entirety—with the knowledge that rev-

elation of their evaluation code could allow the Prover to submit code that passes inspection

checks while circumventing the intent of the checks. Therefore, in the absence of simpli-

fying assumptions, we can expect a kind of dance between the Verifier and Prover, where

they propose different ways of demonstrating that the algorithm code is compliant without

revealing sensitive secrets about it to each other. It is unclear where such a process would

end up. The purpose of the rest of this section is listing some ideas that could be used to

begin exploring ways that a broader ecosystem of algorithm governance could contribute to
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a solution to this problem. See also the related Appendix F which grapples with a similar

problem relating to evaluation content instead of algorithms.

Strict coding practices: Strict and modular coding practices for both evaluations and algo-

rithms might allow the potentially rampant complexity of these objects to be brought down

to a more manageable level. Decades of progress in software engineering techniques have

unearthed numerous ways to manage complexity and ensure that modules (including mod-

ules with unknown internals) abide by strict behavioral protocols.

Open-source code: An extreme transparency measure is using open-source code. In such

a scenario, the Prover does not have any security concerns about their code and therefore

there is no concern about letting it be inspected.

Third party efforts to minimize the “algorithmic overhang”: If open-source techniques

are far behind closed-source techniques, then an “algorithmic overhang” may exist, where a

Prover could undertake training that appears compliant but is not (see for example the pass-

word locked model example provided above). Minimizing the algorithmic overhang may

therefore be desirable for a number of reasons. Third party states or other organizations

could attempt to advance the state of open-source capabilities in an attempt to reduce this

overhang and therefore provide less wiggle room for states to “sandbag” with their mod-

els. Of course, expanding the capabilities of open-source algorithms will also proliferate the

ability to produce more capable models. One potential way to mitigate broad proliferation

would be for state of the art algorithms to be shared among a more select group, such as a

small group of experts or representatives of key states who contribute to the Verifier’s knowl-

edge of what the expectations should be for the performance of leading models. Of course,

such a proposal would likely be strongly opposed by those who want to see broad-based

development of AI.

Algorithm registry and layers of judgments: An algorithm registry could be as simple as a

hash of the algorithm code along with an owner.412 Judgments about algorithms would be

rendered by authorities with the power to see algorithms in their full detail (such as domestic

regulatory agencies). These judgments would be public. Therefore, if a large model is being

proposed in a training plan (see Section 4.5.1.1.1), the algorithm it employs should already

have been judged compliant by a domestic regulatory agency. If a regulatory and verifica-

tion process at the international level calls into question the compliance of the algorithm,

this could cast doubt on the ability or trustworthiness of the domestic regulatory agency that

signed off on the algorithm in the first place. Third-party assessments of the algorithm could

lend weight to this judgment. Hypothetically, the explicit endorsement of the algorithm by

the domestic regulatory agency should make it more costly for the Prover in a scenario in

which they are caught, thus slightly reducing the desirability of defection. Finally, if an agree-

ment also requires that an algorithm be subjected to future evaluations that are developed,

the Prover considering a regulatory circumvention would have to believe that they would

eventually face a very serious risk of either being revealed to be out of compliance or having

412 See also the related idea of a model registry (Appendix L.3).
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to say “no” in response to a perfectly reasonable evaluation—which other actors might take

as them being out of compliance just the same. See also Appendix F for more on this point.

Estimate the capability scaling of algorithm code: Even keeping the algorithm secret, small

experiments could be done to test its ability—using known data sets. This could allow the

scaling law for this algorithm to be estimated and thus allow sandbagging413 attempts to be

discovered (see more on this in Appendix G).

Require anopenAPI versionof every algorithm: Building on the idea above, another highly

speculative technique for ensuring that the general capabilities of algorithms are well-known

would be to require that an open API serve a small or medium-sized model trained using that

algorithm and employing similar data to the real proposed model. Metadata about the small

model could be available publicly, thus allowing some publicly verifiable tests of the learning

capabilities of the model. The key reason why this approach may be entirely unworkable for

sensitive applications is that even access to a small model over an API might reveal a lot about

what the model is designed for, what it is capable of, and what its weak points are. All of these

factors may in fact be deemed sensitive by the Prover for sensitive models. However, in the

civilian realm, such a proposal is less outlandish provided that it can guard against the theft

of trade secrets or training data.

Algorithmic escrow: Building on the simple algorithm registry discussed above, one can

also build a political agreement that requires the open-sourcing of any algorithm that meets

certain criteria—and the cryptographic commitments about the algorithm code mean that

the revealed code will have to match the true code. For example, algorithms submitted to

the registry more than a few years earlier might reasonably be revealed, presuming that the

capabilities of open source models have caught up—or that all meaningful competitor mod-

els built by corporations or states are presumed to have already embodied these insights.

Another potential trigger for open sourcing would be a desire to build a model with a large

compute budget. It is important to realize that small specialized models differ from large

multimodal models in compute budget by several orders of magnitude. If international gov-

ernance is primarily worried about the loss of control or strategic effects of extremely large

models, then that governance system could require that larger models have to reveal their

algorithms more quickly—perhaps even before training is completed for those models that

are at the upper end of the compute budget. A variant of this idea would include various

levels of revelation described above, including limited assessor access, limited release to key

personnel, open API access to a small model, and finally open-sourcing.

413 Teun van der Weij et al., ‘AI Sandbagging: Language Models Can Strategically Underperform on Evaluations’
(arXiv, 6 February 2025), https://doi.org/10.48550/arXiv.2406.07358.
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Appendix F: The “Who watches the watchers?”

problem with privacy-preserving evaluations

Another variant of this problem is that the Verifier’s secret evaluation content might be used

to meaningfully explore the Prover’s data in a security damaging way. For example, the

Verifier might be able to test whether a Prover-provided AI model is capable of recognizing

a particular camouflage pattern for military hardware—thus revealing information about a

potential vulnerability of the Prover’s military. Guarding against this kind of attack requires

that Verifier-provided evaluation code and data also be subject to evaluation checks. Natu-

rally, one might ask how the evaluation checks used in this domain are verified—thus creat-

ing a potentially infinite regress evocative of the “Who watches the watchers?” problem in

politics—where empowered authorities must also be watched over by someone, thus raising

the question of who is watching them in turn.

Robustly addressing this kind of problem is beyond the scope of this report, but a few avenues

of work are worth mentioning:

1. Third-party states or institutions might be able to acquire somewhat more access to

private code and data due to their political neutrality (see the process described in Sec-

tion 3.5, but imagine that assessors are from neutral states). Their involvement in a

verification process might allow an important check on the behaviors of the Prover and

Verifier.

2. Public meta-evaluation code and data might be developed for testing private evalua-

tions. While it would be possible for sophisticated efforts to circumvent these checks

because they are publicly available, these circumventions do not come with zero cost.

They would make it more difficult and costly for the circumvention to take place.

3. Similarly, private evaluation and meta-evaluation capabilities might be developed by

many actors simultaneously, thus allowing direct comparison of outputs and checks

among this set of codes. If a comparison effort yielded diverging results among different

kinds of evaluations, it could lead to an escalating process of verification of those tools

(see Section 3.5 for how humans might be brought in).

4. If declarations are made about the strict purpose and design of evaluations, then it is

possible to imagine that the algorithm or the data of the algorithm could be subject

to random changes—exchanging them with open-source evaluations that are collabora-

tively developed. If the behavior of the evaluation sharply diverges from the declaration

when code or data is interchanged, it would be an indication that something is wrong

with the declaration. To be feasible, this approach would need a very tight specification

for evaluation code and data for the declaration to be built around.
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5. Similarly, strictly structured declarations about the intent and structure of an evalua-

tion would allow for claims about the private algorithm and data to be tested by various

means such as simple codes. If the Prover does not get to see the code until after they

have committed to the evaluation content (via a cryptographic commitment), then they

run the risk of either being detected in their circumvention or having to say “no” in re-

sponse to a clearly benign evaluation. In either way, the Prover would be embarrassed

in front of its peers and potentially deemed out of compliance with the agreement. The

challenge with this approach is that revelation of the code of meta-evaluations would

be ongoing, thus reducing their usefulness as they can only be used in this way once

(after use of such an evaluation, the Prover can prepare their own evaluations to face

all known meta-evaluations). Overall, this approach does allow for the Prover to be

“kept guessing” about the tests to which their committed evaluation will be subject to,

thus making them potentially more leery of submitting evaluations that are in fact ac-

complishing different goals than their declared purpose. Furthermore, an agreement

might require that an algorithm or evaluation is subject to any future tests as well—thus

making any commitment by either side subject to a potentially infinite series of unseen

tests, a prospect that would likely be politically daunting for any actor seeking to submit

a resource that diverges from their declaration.
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Appendix G: Model evaluation

Model evaluation encompasses a wide range of techniques that attempt to understand the

capabilities and characteristics of AI models. This section will contextualize the problem and

then provide a brief description of a few specific issue areas that relate to verification.

This section presumes that infrastructure for running code-based evaluations against AI

models already exists and is privacy-preserving for both the Prover and the Verifier. For

a description of how this might be done, see Section 3.5 Note also that in the context of

verification, earlier parts of this report also discuss the regulation of model inputs (such as

data, algorithms, and hyperparameters) and model behavior and attributes (Sections 4.5.1.2.2

and 4.5.1.2.3). Furthermore, another appendix examines the related challenge of algorithm

verification (Appendix E). The question of how evaluation code and data can come to be

trusted even if it is hidden is examined in Appendix F.

Presuming that privacy-preserving infrastructure exists, the remaining challenges may still

be substantial. Sufficient information needs to be gleaned via tests using code and data, and

they must be of reasonable compute and time requirements.414

Evaluations are an incredibly diverse category, including tools that differ on the basis of sev-

eral dimensions, including:

• Goals, including benchmarking capabilities—such as dangerous capabilities like CBRN

weapon construction knowledge; testing compliance with rules; and testing political

dimensions such as apparent bias.415

• Technological implementations, including: request-response tests for a model, deep

inspection of model activations and weights, and tests enabled by other AI tools—

including everything ranging from simple classifiers to large multimodal models.

• Complexity of efforts to find hidden capabilities, including deep inspection as men-

tioned above and also capability elicitation using various kinds of tuning—including

prompt tuning or fine-tuning of the entire model.

A much more complete survey of model evaluation is available in Reuel and Bucknall (2024),

section 3.1.

G.1 Open-ended challenges

Even with full access to all the model inputs, model training snapshots, and the model itself,

verifying some rules is far from trivial. Three major challenges are worth a brief discussion:

sandbagging, aggregate models, and distillation. The issues in these spaces indicate that fur-

414 For compute budget, see also Reuel and Bucknall (2024), Section 3.3.2.
415 These are sometimes desired by the creators, regulators, or users.
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ther work will be necessary to understand the potential and limits of model assessment even

presuming that the assessment efforts have full access to model inputs, weights, and infer-

ence exchanges with a substantial compute budget.

G.1.1 Sandbagging

Under normal circumstances, model capabilities are often gradually discovered for months

after the model’s release as users attempt to accomplish different tasks with them. Evalua-

tions of capabilities must always be seen therefore as a lower bound on model capability, not

an upper bound.416

A more dangerous and concerning form of this problem is a covertly adversarial Prover who

is attempting to hide non-compliant AI capabilities in a way that evaluation suites will not

find them.417 Most likely, a circumvention of this kind will require a non-public algorithmic

insight that notably advances the capability frontier (see Appendix E). For example, a Prover

might train a model with non-compliant (and perhaps dangerous) capabilities, but have those

capabilities locked with a password. Without the password known only to the Prover, the

dangerous capabilities will not be demonstrated. In theory, this allows the Prover to submit

this model for evaluation fully expecting that no known evaluation technique will catch its

dangerous capabilities—evaluation results might look reasonable, and capability elicitation

may not work.418

It is not clear at this juncture whether such an attack would require algorithmic changes

which could in theory be detected (see Appendix E) or whether it could be accomplished via

data manipulations that are difficult to detect. It is also unclear whether even skilled humans

with full information access could catch an attack of this kind unless they had the time and

resources to extensively test the provided algorithm on other (known to be uncorrupted) data

sets and thus check its scaling laws, since knowing the true capability curve of the algorithm

might allow sandbagging to be detected (see Section 3.5 for more on human-in-the-loop

full-text verification).

In terms of governance of this kind of attack, another avenue is to cap the maximum size

of models somewhat below what is believed to be the smallest model that could possibly

pose a significant threat, given public knowledge on the issue (see also ‘Third party efforts to

minimize the “algorithmic overhang” ’ in Appendix E).

416 See Reuel and Bucknall (2024), Section 3.3.1.
417 Teun van der Weij et al., ‘AI Sandbagging: Language Models Can Strategically Underperform on Evaluations’

(arXiv, 6 February 2025), https://doi.org/10.48550/arXiv.2406.07358.
418 This is an open area of investigation. The reason why basic capability elicitation efforts might not work is

that there may be no signal to boost. That is, the password locking of the model might be so effective that there
are no hints of dangerous capabilities and thus weight updates based on those hints might not be possible. Direct
manipulation of model weights would of course be possible, but that is an open research domain of its own. In
general, without a clear understanding of how the model is actually thinking (another research domain known
as interpretability), these efforts may fail.
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G.1.2 Aggregate models

Another particularly thorny challenge is aggregate systems such as “mixture of experts” ap-

proaches. It might be unclear to the automated evaluations how the particular system being

examined will relate to other systems. It might be possible to circumvent safeguards and

build an enormous system that is composed of smaller models tied together. It is not clear

precisely how a combination of evals could catch this type of circumvention. Perhaps one

approach would be relatively rigid regulatory rules about the clear and obvious connection

between 1) the types of training data and 2) the declared uses of the system—where mis-

matches between these expectations or obfuscation of either data or model uses would be

an immediate cause for alarm. For example, known public algorithms could be trained on

a random portion of the declared data to prove that the data actually is what it is supposed

to be—or known public data could be used to train using the secret algorithm to prove that

the algorithm is doing what it is supposed to be doing (see also Appendix E). Relatedly, strict

declarations might be needed about data and control flow to prove that none of the declared

AIs are the overseer of other powerful AIs.

G.1.3 Data-centric distillation

Distillation techniques may allow extremely capable AI models to be created from less data.

This might be accomplished via an existing model being used to create training data that

has the express purpose of being used to make a more powerful model. It is not known how

powerful this technique could be.419 Explicitly testing for the use of this technique might

be very difficult, since it might employ otherwise standard algorithms and compute budgets.

One hypothetical approach is data provenance—where the Prover has to demonstrate some-

how where their data has come from to demonstrate that it is not distilled (e.g., by tracking

all inference from all large models—which would be a gargantuan and probably infeasible

task). It may be more practical to assume that techniques like this will be used, and both

algorithmic progress indicators and the regulations that are based on them must also take

these kinds of capability changes into account to ensure that regulations (and verification)

are appropriately tuned to the challenge as it evolves.

419 Toby Ord, ‘Inference Scaling Reshapes AI Governance’, 12 February 2025, https://www.tobyord.com/wr
iting/inference-scaling-reshapes-ai-governance.
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Appendix H: Systemically risky AI

One potential definition of systemically risky AI takes into account two pathways to systemic

risk: a) a credible chance of great power war (such as via a major power shift) and b) the

potential loss of human control and its consequent risk to all humans.420

Given what is known today about our limited ability to understand and control complex

AI systems, one clear example of such a systemically risky AI would be an attempt to

build an agentic artificial superintelligence. This category is largely unrelated to the in-

tentions or character of the institution(s) building the AI, since there are hypothetical AIs

powerful enough that no existing institution would reasonably be trusted with their creation

and control.

For clarity, several other kinds of AI should be excluded from the definition of systemically

risky AIs. These include:

• economically or socially valuable AIs which are clearly not capable enough to credibly

cause either a great power war or loss of human control.

• many forms of “transformative AI”, since widespread transformations might be accom-

plished via relatively small, narrow, and safe AIs.421 While maintaining peace in such a

scenario might be challenging, the strategic risks are very different from those posed by

either the creation of a singular superintelligent system or by the race to create it—and

therefore those risks should be dealt with in different ways.

• AIs that great powers are willing to allow to be proliferated. Even if a given AI or system

of AIs is very capable, if leading states are not trying to control proliferation of such

systems, that is a strong signal that such systems are not deemed a systemic risk. In fact,

state efforts against proliferation should be expected for AIs that fall well short of being

systemically risky, such as AIs with significant potential for misuse.

Systems of many AIs in combination should be considered as well, such as the “mixture of

experts” approach, but this line of reasoning is not deeply explored in this report.

A new definition was desirable despite overlapping with several prior definitions because no

prior definition explicitly captures systemic danger (an issue of clear international concern)

without covering many kinds of AI which are not systemically dangerous.422 Rather than

a more technical definition centered on particular characteristics of an AI system, this new

420 The EU AI Act has a narrower definition for models with systemic risk. They focus only on the potential for
the models to directly harm humans, not their potential for triggering war. ‘General-Purpose AI Models in the
AI Act – Questions & Answers’, European Commission, 20 November 2024, https://digital-strategy.ec.e
uropa.eu/en/faqs/general-purpose-ai-models-ai-act-questions-answers.

421 Karnofsky, ‘Some Background on Our Views Regarding Advanced Artificial Intelligence’.
422 For example, ‘transformative AI’ covers economically transformative AI without distinguishing between sys-

temic risk and a more gradual and diffuse transformation. See Karnofsky.
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definition foregrounds the potential political effects of an AI system and is therefore also

workable in a world in which AI development paradigms sharply change.
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Appendix I: Hardware configurations for

“fixed set” policies

Verified hardware could be placed into configurations that reduce the usefulness of that hard-

ware in non-compliant training runs. One example of such a configuration is the “fixed set”

approach, where hardware controls prevent chips from being used in a large collaborating

array by only allowing high-bandwidth communication with a specific, limited set of chips—

thus making extremely large training runs more difficult and costly to complete.423

Prior work has described how on-chip hardware mechanisms could be implemented which

enforce such a policy.424 However, another approach is to implement communication limi-

tations in other ways, such as via network hardware. For example, a pod of a few dozen GPUs

could be configured to only be connected to the rest of the world through a single network

interface with limited bandwidth in order to prevent it from being used as part of a larger

cluster. Hardware controls and monitoring could then be used to verify that the cluster's

physical configuration has not been changed. Such hardware configurations would be easily

reconfigured to be non-compliant, thus necessitating comprehensive monitoring.

Depending on the politically desired slowdown in the training of the largest models, the

inter-pod bandwidth in such a design would need to be surprisingly low (e.g., 1 Mb/s) to be

robust against reasonable advances in the efficiency of distributed training.425 If either kind

of fixed set approach could be implemented and verified, it would allow a Verifier to be more

confident that the maximum rate at which the Prover can train large systems is limited.

423 Such runs typically require tens of thousands of chips running in tight synchrony for months.
424 Gabriel Kulp et al., ‘Hardware-Enabled Governance Mechanisms: Developing Technical Solutions to Exempt

Items Otherwise Classified Under Export Control Classification Numbers 3A090 and 4A090’ (RAND Corpora-
tion, 18 January 2024), https://www.rand.org/pubs/working_papers/WRA3056-1.html.

425 Scher & Thiergart (2024) present calculations that help calibrate our expectations of how difficult this would
be. They examine the challenge of making training approximately 100 times as difficult as it would be on un-
governed hardware—including expected advances in distributed training efficiency. What they find is that the
inter-pod bandwidth limitations would need to be surprisingly low (e.g, 1 Mb/s), thus necessitating alternative
methods for other crucial operations, such as loading models into memory. Aaron Scher and Lisa Thiergart,
‘Mechanisms to Verify International Agreements About AI Development’ (Machine Intelligence Research Insti-
tute, November 2024), page 121, https://techgov.intelligence.org/research/mechanisms-to-verify-i
nternational-agreements-about-ai-development.
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Appendix J: Chip density controls

If distributed hardware were deemed politically desirable, such controls could help verify

such distributions. Equally however, the relative feasibility of distributed training might cre-

ate a desire for increased chip concentration in a small number of governed data centers, as

each controlled facility would require further marginal costs.426

Overall, chip concentration limits may be politically challenging given that commercial data

center construction tends to concentrate data centers in specific regions such as Northern

Virginia due to the ready availability of electric power, internet backbone connections, and

other infrastructure. Furthermore, for military AI chips, only very coarse-grained location

verification can be expected to be tolerable to militaries (see Section 1.5.1.1), thus requiring

other approaches for the regulation of training scale (see Section 2.5.4.2).

Therefore, different chip location tracking regimes may be needed for the civilian and mili-

tary spheres, since location accuracy that is fine-grained enough to mitigate concerns about

a dense region such as Northern Virginia may be precise enough to be intolerable for mili-

taries. Finally, the realistic potential for large improvements in the efficiency of distributed

training may make it infeasible for a governance regime to make large models infeasible

via location tracking alone—although other regulatory goals might be served well by such

a system.427

426 Scher & Thiergart (2024).
427 Scher & Thiergart (2024).
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Appendix K: Potential approaches for

device-model matingwith an encryptedmodel

As noted in Section 4.5.2.3.6.c, it could be useful to have a technique for embedding a model

in a device in a way such that downstream users cannot feasibly a) exfiltrate the model or b)

repurpose the hardware. This appendix outlines one speculative approach to the problem

and another potentially interesting avenue of investigation.

Hardware functionality supporting model-hardware mating might be accomplished through

the inventive use of a physical unclonable function (PUF).428 This idea has roughly four parts:

1) A physical enclosure is placed around a chip, with the enclosure material creating a sensi-

tive PUF which is then used as the private key of the device. 2) When a model is loaded onto

the device, it is encrypted using the device’s PUF-backed private key.429 3) When the model

has been installed, a physical or digital switch is thrown, blowing select fuses inside the inner

(enclosed) hardware, with the effect of disallowing another model installation thereafter. 4)

Inference conducted by the model requires the encryption of inputs and the decryption of

outputs using the PUF-backed private key. Thus, the model should be functional, but never

reside at rest or even in memory in the hardware in a way that is decryptable without the

private key. Exfiltrating the private key might be possible, but might be very difficult de-

pending on how sensitive and reliable the PUF enclosure is. One of several major unknowns

with this approach is whether a PUF enclosure can reasonably withstand the normal stresses

of the environments in which these devices would be placed without deforming and thus

rendering the device inoperable.

A very different approach to at least part of the problem would be to employ in-memory

processing and a form of encrypted memory to protect the model. It should be noted at the

outset that in-memory processing for AI inference might be impossible or very impractical.

However, if it is possible, then a random bit mask could be generated at the hardware level

which reliably flips half the bits that are stored in non-volatile memory. An attempt to extract

the model from the memory units directly would also have to extract the entire bit mask.

In-memory processing would be desirable because it would prevent the model from being

loaded into random access memory in order for it to be used for inference. The combination

of these mechanisms would mean that the model is never available in plaintext.

428 For readers unfamiliar with physical unclonable functions, they are essentially a way to use physical objects
as private keys. Crucially for the usage described here, if you change the object even slightly, the private key
is lost. A similar scheme is described in Vincent Immler et al., ‘Secure Physical Enclosures from Covers with
Tamper-Resistance’, IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019, 51–96, http
s://doi.org/10.13154/tches.v2019.i1.51-96.

429 Note that being encrypted with the PUF means that only this device can produce the decryption key, and
that key would be destroyed if the enclosure is tampered with.
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Appendix L: Other verification mechanisms

L.1 Model-specific training licensing

A model-specific training licensing system is a licensing mechanism that is intended to

be used for permitting model training. Therefore it combines a training plan—all infor-

mation needed to train a model, including the code, data, and hyperparameters (see Sec-

tion 4.5.1.1.1)—with a licensing system that only allows hardware to be unlocked with an ap-

propriately signed license. With such a scheme in place, the governed hardware can only be

unlocked for model training purposes if the license issuing authority attaches a valid license

to a training plan. Cryptographic techniques can be used to ensure that the license and train-

ing plan are only valid together, thus allowing the licenser (or anyone verifying all licenses)

to see what models are being permitted to be built.

While basic licenses such as those described in the prior section appear to be a relatively

well-scoped and workable hardware mechanism that could be added to future hardware,430

it remains less clear at this point whether such a mechanism could be designed to verifiably

enforce adherence to a training plan—making this a speculative mechanism.431 In addition

to being able to enforce offline licenses, this hardware mechanism would also have to be able

to enforce training plans—or enable their enforcement. Therefore, if data or hyperparame-

ters submitted by the Prover to the training process actually differ from the commitments

made in the licensed training plan, the hardware must either refuse these non-compliant

operations or take some other kind of enforcement action.432

How could this be used for governance? Consider that a licensing authority (see Section 3.6.2)

could require that a training plan be put through privacy-preserving evaluation (see Sec-

tion 3.5) before it is allowed to begin. This would mean that the data, algorithm, and hy-

perparameters would be verified before training could begin. Given that the hardware is

locked—and this could be confirmed via other channels as well (see Section 2.5.2.2)—this

would then be a credible mechanism for demonstrating that the governed hardware is not

conducting training without the Verifier seeing and verifying the training plans via the pre-

licensing process.

430 Aarne, Fist, and Withers, ‘Secure, Governable Chips: Using On-Chip Mechanisms to Manage National Secu-
rity Risks from AI & Advanced Computing’; Kulp et al., ‘Hardware-Enabled Governance Mechanisms’.

431 Confidential computing can accomplish similar governance goals, but given its general-purpose nature, it
might be more difficult to secure than a purpose-built mechanism.

432 Such action could be designed to enable later inspection of the chip (via remote attestation or physically) to
detect that non-compliant training information was used. An important caveat for this sort of thing is that digital
errors do occur, so a reasonable rate of errors should be expected and planned for when rolling out a scheme
like this to many tens of thousands of chips.
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L.2 Model-specific inference licensing

Using the same approach as that described for licensing of training plans above, this mecha-

nism would only unlock the full power of hardware for inference purposes if an appropriate

license is provided along with the licensed inference plan (see Section 4.5.2.2.1). The same

technical and political limitations apply to this mechanism as its cousin described above, with

two changes. First, single-chip inference licensing is somewhat more likely than single chip

training licenses, since a minimal inference system for a relatively small model might indeed

be using a single chip. Still, licensing at the level of a pod would probably be more common

and useful. Second, automatically enforcing an inference plan might be meaningfully dif-

ferent from enforcing a training plan. One way to make these different processes depend

on the same hardware mechanism would be to have the “plan” in either case simply be a

cryptographic commitment for the complete package of code and settings which contains

all of the information needed to either train a model or perform inference on it. This kind of

simplification might allow both inference plan enforcement and training plan enforcement

to be enabled via the same mechanism.433

L.3 Model registry

A model registry is a database tracking crucial governance information for each model.434

For example, the data pertaining to a single model could include its fingerprint alongside

other metadata such as who created the model, what evaluations were done on the model,

and the results of those evaluations, and the total compute budget of the training process

including all prior models used as inputs.435 A model registry can be useful for governance

processes such as recognizing models later in time and also tracking how they have been

tested. Depending on the sensitivity of the information contained in a model registry—or

how crucial it is for successful verification—detailed questions might arise about its technical

composition and location. This report does not investigate this particular question further,

but engages in a similar discussion in Section 3.6.

L.4 Model fingerprint attestation

The goal of model fingerprint attestation is to credibly demonstrate that a given model is

actually loaded into memory on specified hardware (e.g., a chip or pod). Simple versions

of this are available via remote attestation and confidential computing (see Sections 2.2.4.2

and 2.2.4.4), but more specialized hardware-enabled versions are also theoretically possible

and may have some advantages.
433 The similarity between this mechanism and remote attestation is not accidental. Both mechanisms rely on

the hardware root of trust to provide credibility to the attestations. Neither mechanism can fully guard against
circumventions post-attestation without either a more complicated protocol or other supporting mechanisms.

434 Elliot McKernon et al., ‘AI Model Registries: A Foundational Tool for AI Governance’ (arXiv, 12 October 2024),
https://doi.org/10.48550/arXiv.2410.09645.

435 The idea of a “compute graph” or similar concept mapping all compute embodied in all models is also raised
in Petrie et al. (2024).

159

https://doi.org/10.48550/arXiv.2410.09645


Ideally, such a mechanism could robustly demonstrate that a precise, identifiable chip (or

pod) has precisely a specific model in memory. In practice, it might actually be advisable for

this commitment mechanism to lean less on the hardware private key and more on computa-

tions that can only be done by a chip of at least the expected capability with the model already

in memory. This means that even if the hardware root of trust is violated on all the chips, thus

allowing the Prover to run other models on their chips—the Prover would still have to keep

an equal-or greater performance chip geared up and prepared to respond to cryptographic

challenges about the model that it is claiming to be running. Since loading the model into

memory would take at least a number of seconds (if not much longer), it would be infeasi-

ble for hardware running a completely different model to respond to the challenge rapidly

enough if the time horizon for the challenge is kept short enough. This approach would be

similar in concept to a proof of work,436 but conceptually it would be a proof of work that

could only be done by a chip that is not lying about the work that it is doing. Designing a

cryptographic challenge that fits the design specifications of this mechanism is an area for

future work.437

Presuming that a neutral cluster is available, these proofs could be verified in batches there,

where a copy of the model can be used. Doing these proofs after the challenges have taken

place provides an additional level of certainty. For example, even if the Verifier’s communi-

cations could all be read by the Prover, if the random challenges are generated right before

they are sent, there is no way for the Prover to prepare their answers ahead of time—and

even the Verifier does not know the right answer when the challenge is sent.

An expanded version of this mechanism challenges all inference chips in the Prover’s in-

ventory simultaneously, essentially amounting to a proof that the right models are loaded

for all the declared chips simultaneously (thus making it infeasible for the prover to use de-

clared chips to cover for each other). This kind of broad proof of work would cause a small

system-wide slowdown for the Prover, so the workload would have to be designed to pro-

vide a credible response relatively quickly without costing much marginal computational

power or time (presuming that the Prover actually has the models loaded that they say they

have loaded).

436 A proof of work allows a Prover to demonstrate that they completed a computationally costly operation. In
examining a proof of work, the Verifier would have to spend extremely little computing power. The asymmetry
between these two processes can allow a Prover to credibly demonstrate what they did with a portion of their
total computing power, thus allowing other verification processes to focus on the remaining portion of their
computing power. On this latter point, see Scher and Theirgart (2024).

437 Roughly, what is needed is a problem which fits criteria something like the following. Provide a problem
which can only feasibly be responded to by hardware of the appropriate type (or more powerful than the declared
type) using an entire model (or pre-allocated shard) in memory, and which takes a maximum of about 50 ms
to complete—but which does not create a major interruption for ongoing inference calculations. The overhead
must be minimal. There can’t be obvious ways to truncate the difficulty of the problem to allow attacks. This
idea should all be developed in public and subjected to incentivized attacks (bug bounties) to find issues. If it is
infeasible for current hardware to do challenges this fast, then the problem can be reframed to only use a random
portion of the in-memory weights. Since this portion is randomly based on the content of the challenge, it would
not be feasible for the Prover to prepare the chip memory before the challenge arrives except to actually have
their model or shard in memory as expected. As the total computational burden of the challenge is brought
down, the timing requirements can be tightened, with them culminating in a very tight check that costs very
little, and can thus be run relatively often.
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L.5 Model tenancy ledger attestation

This mechanism allows hardware to attest to the identity of all models that have been loaded

into its memory. A simple version of this would have the hardware write to a nonvolatile

memory store at least the model fingerprints and timestamps for all operations that load

models into memory. A remote attestation call or local inspection could reveal this list of

fingerprints and timestamps, thus allowing verification. Eventually this list could be quite

long, so in theory it could be truncated assuming that timestamps are included. It is unclear

whether this scheme can be robustly secured other than relying on the hardware private

key as is done for remote attestation and confidential computing. One conceptually similar

idea with the potential to be more difficult to circumvent would be fingerprint attestations

as described above (Appendix L.4) that are done extremely often by a neutral system—thus

demonstrating that it is infeasible that any other models are being run at scale.
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