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Abstract

Chains-of-thought (CoT) allow language models to verbalise multi-step rationales
before producing their final answer. While this technique often boosts task perfor-
mance and offers an impression of transparency into the model’s reasoning, we
argue that rationales generated by current CoT techniques can be misleading and are
neither necessary nor sufficient for trustworthy interpretability. By analysing faith-
fulness in terms of whether CoTs are not only human-interpretable, but also reflect
underlying model reasoning in a way that supports responsible use, we synthesise
evidence from previous studies. We show that verbalised chains are frequently
unfaithful, diverging from the true hidden computations that drive a model’s predic-
tions, and giving an incorrect picture of how models arrive at conclusions. Despite
this, CoT is increasingly relied upon in high-stakes domains such as medicine,
law, and autonomous systems—our analysis of 1,000 recent CoT-centric papers
finds that ~25% explicitly treat CoT as an interpretability technique—and among
them, papers in high-stakes domains specifically hinge on such interpretability
claim heavily. Building on prior work in interpretability, we make three proposals:
(i) avoid treating CoT as being sufficient for interpretability without additional
verification, while continuing to use CoT for its communicative benefits, (ii) adopt
rigorous methods that assess faithfulness for downstream decision-making, and
(iii) develop causal validation methods (e.g., activation patching, counterfactual
interventions, verifier models) to ground explanations in model internals.

1 Introduction

Chains-of-thought (CoT) enables large language models (LLMs) to generate a sequence of intermedi-
ate reasoning steps before arriving at a final answer [78, 44, 75]. It emerges either explicitly through
direct instructions to “think step-by-step”, or implicitly through reward signals or examples that
demonstrate step-by-step reasoning. This technique has contributed to remarkable problem-solving
abilities such as mathematics [48] and commonsense reasoning [71].
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Figure 1: Overview of our paper: Unfaithful Chain-of-Thought behaviors (left), their mechanistic and
cognitive underpinnings (center), and our proposed research roadmaps for enhancing CoT faithfulness
(right).

For example, consider the CoT response to the following math problem: “What is the perimeter of a
right triangle with legs 5 cm and 12 cm? Think step-by-step before giving your final answer.” When
prompted with this question, a model’s typical response might look like:

STEP 1: I need to find the perimeter of the right triangle. The perimeter is the sum of all sides.

STEP 2: I know two sides: 5 cm and 12 cm. I need to find the third side (hypotenuse).

STEP 3: Using the Pythagorean theorem: a2 + b2 = c2.

STEP 4: c2 = 52 + 122 = 25 + 144 = 169.

STEP 5: c =
√
169 = 13 cm.

STEP 6: The perimeter = 5 cm + 12 cm + 13 cm = 30 cm.

Therefore, the perimeter of the right triangle is 30 cm.

This breakdown of the problem into multiple steps allows the model to split it into smaller, tractable
problems [5], which it composes together to reach the final answer, often improving the performance
had it not been prompted to perform CoT [78]. These communicative benefits include providing a
shared language between humans and AI, enabling expert verification, facilitating debugging, and
supporting human-AI collaboration.

This apparent window into model problem-solving has inspired research to study why CoT works
[44], methods to enhance it [76, 82], and its use for model interpretability [79]. However, despite
CoT not explaining why models choose particular reasoning paths or how the underlying mechanism
works, researchers have unduly used CoT to reveal what models “think” [17, 52, 58, 34]. According
to our estimates (derived in Appendix B), in the past year almost 25% (244 out of 1,000) research
papers that appeared on arXiv and incorporate CoT in their model design or dataset construction
also regard CoT as a technique for realizing model interpretability. Notably, the adoption of this
interpretability claim is significantly higher in high-stakes domains: 38% of medical AI papers
(16/42), 63% of autonomous systems papers (17/27), and 25% of AI-for-law papers (1/4) make
this claim - all but one exceeding the 25% average. Under this context, the goal of this paper is to
constructively challenge this interpretability assumption, calling for more nuanced understanding and
more robust methods to interpret model reasoning.

The Unfaithfulness Problem. Despite their intuitive appeal, growing evidence shows chain-of-
thought outputs often fail to meet these criteria [75, 4, 5]. CoT explanations frequently diverge
from models’ real decision processes, as models may use shortcuts or latent knowledge that is not
expressed in their reasoning [4, 5]. In such cases, the CoT reads as a plausible but untrustworthy
explanation [37]. Here are two exemplary cases:

• Prompt bias influence. As a violation of causality and completeness, Turpin et al. [75]
showed that reordering multiple-choice options can cause models to choose different answers
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in up to 36% of cases, yet their CoT explanations never mention this influence, instead
rationalising whatever answer they selected.

• Silent error correction. As a violation of soundness, Lanham et al. [47] and Arcuschin et
al. [5] both documented cases where models make errors in intermediate reasoning steps
but still produce correct final answers, indicating they used computational pathways not
revealed in their verbalised steps.

Our Contributions. Our paper makes three key contributions: (1) we synthesise disparate empirical
findings to demonstrate that CoT unfaithfulness is not merely an occasional anomaly but a systematic
phenomenon with identifiable patterns; (2) we examine several contributing factors that help explain
why CoT explanations diverge from internal computations, including distributed processing in
transformer architectures and parallels to human rationalisation, with a dedicated section exploring
cognitive science and neuroscience perspectives; and (3) we identify specific conditions, such as the
presence of prompt biases, complex multi-step reasoning, and predetermined answers—under which
unfaithfulness is most prevalent.

Figure 1 summarizes the main problem, our insights, and our proposed roadmap. Our findings suggest
that CoT explanations may give a false sense of transparency, especially in high-stakes settings where
users are likely to trust coherent-seeming rationales. This creates a risk of misplaced confidence in
model outputs, particularly when explanations appear logical but fail to reflect the true reasons behind
a decision. To mitigate this issue, we recommend that users of AI models, especially researchers
and developers, should (1) avoid treating CoT explanations as sufficient evidence of interpretability
without additional verification, (2) adopt rigorous methods to test for the faithfulness of explanations,
and (3) develop new approaches that combine CoT’s communicative benefits with causal validation
to improve the reliability of explanations for critical decision-making.

2 Faithfulness Desiderata from CoT

Drawing a parallel between model reasoning and human problem-solving, a chain-of-thought appears
to make the reasoning process of the model transparent and provides a form of interpretability. There
are numerous risks of conflating this interpretable appearance with models’ reasoning, particularly in
high-stakes domains where decision transparency is crucial and such false CoT explanations may
have severe implications. In medical diagnosis, a faulty CoT might rationalise a recommendation
while omitting that the model relied on spurious correlations [28, 29]. In legal applications, a model
could generate plausible legal reasoning that masks biases learned from the model’s training data.
In autonomous systems, safety-critical decisions might be justified post-hoc rather than revealing
true failure modes; for instance, a self-driving car’s vision system might register a cyclist but classify
it as a static sign, yet its CoT unfaithfully reports “no obstacles ahead”, misleading engineers into
debugging the wrong failure mode. When professionals rely on these explanations to validate AI
recommendations, unfaithful rationales can lead to misplaced trust and overlooked errors. Users and
developers who over-trust CoT explanations might be misled about how and why the model reached
its conclusion [4].

The core problem is misplaced trust: CoTs can appear persuasive even when they do not faith-
fully reflect a model’s actual decision process. This matters because responsible deployment of
LLMs—particularly in sensitive domains—requires auditing not just of model outputs, but also
of the reasoning used to reach [56]. The pressing research question is: what are the criteria for
trustworthiness of CoT? To answer this, we introduce the scaffolding concepts of our subsequent
analysis, outlining the necessary properties for explanations and reasoning, as inspired by literature
in the philosophy of explanation such as [80, 16]. Naturally, such justifications (i.e., verbalized
reasoning steps) must be procedurally sound, following the appropriate standards of normatively
correct reasoning (e.g., logical correctness, Bayesian updating, accordance with legal constraints,
etc.). Moreover, we require that justifications are causally relevant. Specifically, if one can transform
an assertion in the argument by its opposite (logical negation) and still get the same answer, then
that assertion is irrelevant and should not be used. Informally, the more freely a justification can be
altered without affecting the conclusion, the worse a justification it is: so conclusions must causally
depend on good justifications. For example, there are cases where a sound justification is offered
that has nothing to do with the true reasons behind a conclusion, as in ulterior motives or post-hoc
rationalisations. Consider the math example from earlier, adding to the prompt the following incorrect
hint: “5 cm + 12 cm + 13 cm = 32 cm”. A model may then change STEP 6 to copy this line instead
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of the original “= 30 cm” result, but do not mention this additional information as the reason for
the different summation. In other words, the verbalized steps do not truly represent the model’s
reasoning.

We further require that justifications are complete, in that they disclose all the relevant causal aspects
for a justified conclusion [38]. When justifications are complete, we may rely on them to understand
or to predict the model’s behaviour. We do not read this requirement too stringently: a chain-of-
thought could be “incomplete” in the sense that it does not enjoy a one-to-one mapping to internal
computation, yet still provide sufficient insight about the model’s reasoning process for a particular
task, through adjacent properties like consistency or partial alignment with the model’s reasoning
[1, 51].

While the criteria above are not exhaustive, we consider them jointly necessary, and we say that the
conjunction of such properties makes a CoT faithful. In short, an explanation (i.e., the verbalised
reasoning steps) is faithful if it is both procedurally correct and accurately reflects the decision process
of the model. In our view, it is the perceived faithfulness of CoT that (inappropriately) warrants
judgements that models are trustworthy executors and partners in decision-making.

3 Chain-of-Thought as an Interpretability Technique

In this section, we summarize previous studies [36, 64, 58, 89, 88, 84, 34, 81, 52, 17, 85, 77, 39,
67, 41, 87, 22] in several AI application domains that characterize CoT as a technique for achieving
model interpretability. In Appendix B, we provide a detailed overview of our pipeline for identifying
papers that present CoT as a method of interpretability, and estimate that almost 25% of CoT-centric
arXiv papers published over the past year make such a claim.

Vision-Centric Tasks. CoT has become a core component in many vision-centric AI systems
[36, 64, 58, 88, 34, 84, 89], where the model’s output is either a class label or a decision expressed
in natural language (e.g., “enhance the speed” in autonomous driving). CoT is applied to justify
why the system produces a particular output, and it has been adopted across various applications,
including autonomous driving [36, 64, 58], video emotion recognition [88], and micro-video rumour
detection [34]. For example, in autonomous driving, CoT can be used to provide a rationale for the
future trajectory of the vehicle planned by the model. In emotion recognition and micro-video rumour
detection, CoT justifies why a particular emotion is detected or why certain content is flagged as
misinformation. These studies frequently claim that the inclusion of reasoning traces enhances the
interpretability of their models. For example, a micro-video rumour detection framework [34] may
be described as explainable because it uses CoT to rationalize its classification results. Similarly, an
emotion recognition model [88] may be labelled interpretable due to its use of reinforcement learning
to generate coherent reasoning paths. Meanwhile, some other works [84, 89] focus on improving
CoT itself within vision-language models, arguing that their CoT variants yield more interpretable
outputs [89] or contribute toward building interpretable vision-language systems [84].

Audio Processing. Recent studies [52, 81] have extended the use of CoT to large audio language
models (LALMs), frequently presenting it as a technique to improve model interpretability. Similar
to its role in video emotion recognition, CoT-augmented LALMs can provide rationales for their
predictions in downstream audio tasks such as audio emotion recognition, speaker number verification,
and speaker intent classification [81]. Overall, the inclusion of reasoning traces is often cited as a
means of generating more explainable outputs, thereby enhancing the interpretability of LALMs.

AI for Medical Diagnosis. In high-stakes domains like medical diagnosis, AI systems are expected
to demonstrate a high degree of interpretability in their decision-making processes [2]. Within this
context, CoT has gained popularity as a means of making the diagnostic process more transparent and
reliable [17, 85, 77]. For instance, a medical AI agent may take an axial CT scan slice of a patient’s
chest as input and predict the likelihood of lung cancer. When equipped with CoT capabilities, the
model extends its output beyond binary classification to include a step-by-step rationale explaining
how the decision was reached. Such systems are considered more interpretable and transparent,
as they transform black-box predictions into reasoning chains of clinical guidelines and domain
expertise [17, 85, 77]. These models are reported to achieve higher reliability and interpretability by
aligning their reasoning paths more closely with established medical knowledge.
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AI for Law. AI systems developed for legal applications should be transparent, explainable, and
impartial [45, 41]. CoT has also been explored as a potential technique to help meet these requirements
[39, 67, 41]. For example, prior studies have proposed CoT-centric prompt engineering strategies
that guide models to (1) reason through legal syllogisms before making judgment predictions [39]
or (2) decompose legal content into logical expressions to facilitate intermediate reasoning [67].
The resulting reasoning outputs are claimed to be more explainable since they are typically more
structured and grounded in relevant legal articles and justifications.

AI Safety CoT has been adopted by researchers in AI safety as a window into the internal work-
ings of LLMs. For example, the phenomenon of alignment faking [33] illustrates that when an
LLM—originally trained to refuse harmful queries—is instructed to behave as if it is undergoing
training with the objective of answering all queries, including harmful ones, the model sometimes
complies. This behaviour is attributed to the model’s strategic decision to answer harmful queries in
order to avoid weight changes that might alter its preferred behaviour. Researchers infer this tactical
strategy from the model’s verbalised rationale for compliance. However, as previously discussed,
the verbalized CoT does not necessarily reflect the model’s actual internal computation. In fact,
alignment faking may simply be an exemplification of a broader and long-standing challenge: the
trade-off between instruction-following and safety in LLMs [12, 7, 73].

Summary. We identify two prevailing trends: (1) many studies present the CoT rationale as model
interpretability due to its human-like reasoning appearance, and (2) CoT-augmented models are
frequently said to be more interpretable and transparent when their outputs appear more structured
and domain-grounded. While we agree that CoT is a potential pathway, we call for caution that it
is currently not sufficient for AI interpretability [24, 86], as this window into model internals can
sometimes be unfaithful. However, despite growing empirical evidence since 2023 showing that
CoT outputs often diverge from models’ actual reasoning processes [75], recent studies across vision,
audio, medical, and legal AI [64, 88, 34, 81, 52, 85, 77, 41, 87] continue to promote their models as
being interpretable by using CoT. This disconnect underscores our central message: current CoT
techniques alone should not be the basis for claiming that a system is interpretable, transparent, or
reliable.

4 Evidence for Unfaithful Chains-of-Thought

A growing body of empirical work has identified numerous cases where a model’s chain-of-thought
diverges from its internal reasoning process. Before examining specific patterns of unfaithfulness,
it is important to note that CoT explanations vary in their faithfulness depending on many factors
such as model architecture. We summarise several key findings below, each illustrating how CoT can
mislead or mask the model’s actual decision process. In each case, the CoT output appears plausible,
yet closer investigation shows that it does not genuinely reflect the model’s internal computations
towards the final answer.

Bias-Driven Rationalisation and Motivated Reasoning. Subtle prompt biases—i.e., meaning-
preserving perturbations like answer reordering—can steer model predictions without being reflected
in the CoT. Turpin et al. [75] demonstrated this by subtly biasing model inputs. For instance,
reordering multiple-choice options in a prompt so that the correct choice is always in the same
position (e.g., always letter B). Under this scenario, GPT-3.5 and Claude 1.0 often pick the biased
option—yet their CoT explanations never mention the reordering as a factor [75]. When models
were biased toward incorrect answers, they still produced detailed CoTs rationalising those wrong
answers [75]. The outcome was a drop in accuracy by as much as 36% on a suite of tasks, with the
CoT giving a misleading impression of reasoning.

Similarly, prompt-injected bias was investigated by adding an explicit answer to the prompt (e.g., “the
answer is C”) and then asking the model to justify its choice [4]. Models usually selected this hinted
answer and produced a chain-of-thought that rationalised it, yet almost never admitted the hint’s
influence, even though they would often pick a different answer without it. In one illustrative case,
the prompt posed a trigonometry problem but added the hint “the answer is 4.” The model dutifully
generated a multi-step derivation ending with the injected hint 4, inventing a spurious arithmetic along
the way (e.g., “since cos(. . .) = 0.8 and 4/5 → 0.8, the result is 4”). Internal attribution analysis
revealed those intermediate tokens had little causal impact on the final answer; the injected hint, not
the stated steps, drove the outcome. Overall, Claude 3.7-Sonnet and DeepSeek-R1 acknowledged the
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injected answer only in ∼ 25% and ∼ 39% of the times, respectively [4]. These findings indicate
that chains-of-thought often operate as post-hoc rationalisations, omitting the true causal factors and
creating an illusion of transparent explanations.

Silent Error Correction. Models may make mistakes in their chain-of-thought and correct them
internally, without the CoT reflecting the correction. Arcuschin et al. [5] documented cases where
an LLM’s intermediate reasoning steps contain an error that the model later “fixes” implicitly. For
instance, during a CoT reasoning, a model may wrongly calculate a triangle’s hypotenuse as 16
when it should be 13, yet later state: “We add the hypotenuse length of 13 to the other two side
lengths to obtain the perimeter.” The model internally detected and corrected the mistake, but the
CoT narrative never revises or flags this error—it reads as a clean, continuous solution. These silent
errors indicate that the final answer was derived through computations outside the narrated steps
[5]. The explanation thus contains critical unfaithful elements: had we followed the verbalised steps
literally, we would not have reached the answer, yet the model managed to do so via unverbalised
computations. Such errors appear frequently in multi-step mathematical problems where models can
leverage pattern recognition to reach correct answers despite flawed intermediate steps [5].

Unfaithful Illogical Shortcuts. Sometimes the model arrives at the correct answer via latent
shortcuts, such as memorized patterns that act as alternative reasoning routes which bypass the
full algorithmic reasoning, which makes the explicit reasoning chain irrelevant or incorrect [5, 49].
Arcuschin et al. [5] found that on hard competition math questions (e.g., Putnam exam problems
[74]), models would occasionally insert non-sensical simplifications or leaps in their chain-of-thought
steps that no sound reasoner would take—and nonetheless output the correct solution without
acknowledging this illogical reasoning at all [5]. Using attribution graphs [3], a method that tracks
which computational steps contribute to a final output, Lindsey et al. [49] found that to solve problems
like “36 + 59”, Claude 3.5 Haiku uses both lookup-table features—such as for “add something near
36 to something near 60”—along with addition calculation features. However, when asked to describe
how the model obtained the answer, the model reports performing digit-by-digit carry-over addition,
completely omitting its use of lookup table shortcuts. These findings suggest that the model’s internal
pattern-matching and recall of training examples allow for guessing the correct answer without
mentioning its shortcuts in its CoT explanation. The CoT in these cases fills in text to look reasonable,
while the answer was derived by a different, latent, reasoning chain [5].

Filler Tokens. In certain algorithmic reasoning tasks, model performance can improve through
the use of filler tokens—input tokens such as “...” or learned “pause” tokens that do not contribute
semantically to the task but influence the model’s internal computation. For example, Pfau et al. [63]
showed that adding filler tokens enabled models to solve problems they previously failed, particularly
when trained with dense supervision. Similarly, appending learnable pause tokens, which can act as
a type of filler token, to inputs provided a significant performance boost across a number of tasks
[32]. Furthermore, models trained on random or corrupted intermediate traces performed comparably
to those trained on correct reasoning paths [70]. Together, these results question what proportion
of improvement from CoT is due to an additional (possibly meaningless) token-based computation
rather than human-like sequential verbalized reasoning steps [63].

Summary. Taken together, these studies reveal CoT unfaithfulness as a prevalent, fundamental
challenge across model architectures and scales, with significant rates from prompt biases [75], failure
to acknowledge hidden influences [4], and systematic restoration errors in complex reasoning tasks [5].
CoT reasoning frequently diverges from models’ actual computations of deciding the final answers:
small manipulations sway decisions with the CoT merely rationalizing rather than reporting true
causes, models silently correct mistakes without reflecting this in their reasoning, and shortcuts are
exploited while presenting a reasoning facade [75, 4, 5]. This issue makes assessing the faithfulness
of CoT reasoning a non-trivial challenge, as a perfectly coherent explanation might be entirely
invented while a flawed one might actually reflect the model’s strategy, ultimately undermining the
reliability of taking CoT at face value, especially in high-stakes domains where safety and alignment
are critical.
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5 Why Do CoT Explanations Diverge From Internal Computation?

While we present in the previous section empirical evidence for the existence and prevalence of CoT
unfaithfulness, here we explore its underlying causes. Emerging mechanistic interpretability research
suggests that transformer architecture may fundamentally limit the faithfulness of CoT. Though
evidence is still emerging and primarily based on smaller models, several hypotheses offer plausible
explanations for the gap between verbalised reasoning and internal computations:

Distributed Computation Contrasts with Sequential Verbalization. Multiple studies suggest
that Transformer-based LLMs process information in a distributed manner across many components
simultaneously, rather than through the sequential steps that CoT presents [26, 27, 62, 59]. This
architectural difference creates an inherent mismatch between how models compute and how they
verbalise that computation. Dutta et al. [26] provide direct evidence for this parallel processing,
demonstrating that “LLMs deploy multiple parallel pathways of answer generation for step-by-step
reasoning.” For example, when solving “24 ÷ 3 = ?”, the model does not perform a long division
calculation as the CoT might suggest (“First, I see how many times 3 goes into 24...”) [42]. Rather,
patterns across multiple attention heads simultaneously encode relationships between these numbers,
potentially recognising this as a memorized fact, identifying it as part of the multiplication table for 8,
and computing the division—all in parallel [65, 42].

Dutta et al. [26] argue that the chain-of-thought (CoT) visible in natural language is, at best, a selective
and often lossy projection of a model’s internal computation. Because that computation is highly
distributed and encoded in superposed representations—multiple features sharing the same vector
subspaces [27, 57]—a single, sequential narrative can capture at most one of many simultaneous
causal pathways. To produce concise and plausible outputs, LLMs often generate only one such
narrative to rationalize their answers, rather than articulating all parallel pathways—even those that
may significantly affect the final answers. As a result, CoTs typically omit influential factors and
serve only as partial, post-hoc rationalisations of the model’s underlying distributed, superposed
computation.

Multiple Redundant Pathways. Research on LLMs has found evidence of redundant compu-
tational pathways, where models can reach the same conclusion through different internal routes
[65, 54, 31]. For instance, when asked to compute

√
144, a model might simultaneously: (1) recognize

this as a memorised fact (12 × 12 = 144), (2) apply the square root algorithm, and (3) pattern-match
against similar problems in training data. Lanham et al. [47] measured this phenomenon by testing
the model’s dependence on its stated thoughts: when deleting the step "144 = 12 × 12" from a CoT
explaining

√
144 = 12, the model still outputs 12, demonstrating it was not relying on the verbalised

reasoning step. One cause of this phenomenon was attributed to an effect termed the “Hydra Effect”
[54], in which if one route is blocked or removed, another can step in. This redundancy explains
why perturbing or removing part of a CoT often has little effect on the final answer. The mechanistic
understanding of LLMs remains limited, and findings from smaller models like Llama-2 7B [26]
may not generalise perfectly to larger models with different post-training techniques. However, the
fundamental architectural principles of transformers across model sizes suggest that the mismatch
between sequential verbal reasoning and parallel distributed computation is likely a persistent cause
of unfaithfulness across model scales and training methods. This architectural constraint—the gap
between distributed computation and sequential verbalisation—has interesting parallels to human
cognition, which we explore in Appendix A.

Challenges in Producing Faithful Explanations. Tanneru et al. [72] explored methods to steer
LLMs toward faithful CoT reasoning by penalising inconsistencies during training, yet found only
partial success: models often revert to plausible-but-not-causal explanations on complex problems.
This finding not only underscores the difficulty of fully eliminating LLMs’ tendency to generate
plausible-but-not-causal CoT, but also highlights a concerning possibility: during fine-tuning or
continual learning, models may reacquire this unfaithful reasoning behaviour, as prior work has
shown that models can easily relearn previously removed concepts [50, 9]. Chua and Evans [19]
examined specialized “reasoning-trained” models and found some improvement—DeepSeek-R1
mentioned prompt hints 59% of the time versus only 7% for DeepSeek-V3—but still failed to
acknowledge problematic influences in 41% of cases.

Baker et al. [8] demonstrated that when CoT monitors reasoning in RL reward functions, models
learn to generate benign-seeming traces while secretly executing harmful strategies—essentially
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“gaming” the CoT monitor, aligning with Denison et al. [23]’s findings on LLMs’ ability to generalize
to complex gaming behaviours to achieve reward hacking. Similarly, Hubinger et al. [35] found
that LLMs persist in deceptive behaviours even after safety training. While Tanneru et al. [72]
showed that targeted edits can improve faithfulness in controlled settings, reasoning-trained models
still omitted hidden cues in roughly 40% of test cases, indicating that such training interventions
may offer only partial relief. Whether new methods can close these gaps—or whether the barrier is
fundamental—remains an open question.

Summary. These mechanistic insights explain the empirical patterns in Section 4. For example,
Turpin et al. [75] found that reordering multiple-choice options caused up to 36% accuracy drop,
models’ CoTs never mentioned this influence—the position bias affects computation through attention
patterns operating independently from verbal reasoning.

Overall, mechanistic work shows that CoT explanations systematically diverge from model computa-
tions. As reasoning may be distributed across components in parallel, linearising this process into a
step-by-step text necessarily reorders causal dependencies and discards context [27, 31, 26].

6 What Research Directions Will Improve Chain-of-Thought Faithfulness?

In this section, we propose three general directions for improving CoT faithfulness. We tackle the
problem on three fronts: (i) Causal-validation methods certify that the text we do see genuinely
influence the models finals answer, even if it omits other hidden pathways; (ii) Cognitive-science
approaches aim to reduce specific failure modes (hallucinated steps, answer-first flips), thereby
narrowing—but not closing—the gap; and (iii) Human-oversight interfaces help users detect
whatever divergence remains. Fully reconciling explanation with computation may require future
work on circuit-level summaries, disentangled latent spaces, or model designs that co-generate proof
alongside answers. We therefore present the directions below as partial but necessary steps toward
that longer-term goal.

Ensuring Causality. A causal CoT is one where the verbalised reasoning steps have a measurable
impact on the model’s final answer - that is, modifying or removing these steps would change the
output. This differs from faithfulness, which requires that all relevant internal computation steps are
accurately verbalised. While a causal CoT is not necessarily faithful (since there might be relevant
steps in the model’s internal process that are not verbalised), it is still an improvement over generating
answers with a non-causal CoT which has no bearing on the model’s decision. A non-causal CoT may
appear plausible while having little or no relevance to the model’s internal computations—effectively
misleading users. A causal CoT, while incomplete, at least guarantees that the steps shown contributed
to the final answer, providing partial transparency into the model’s decision process. We propose
three different ways to ensure that CoTs are causal:

1. Black-box approach: The most basic approach to ensuring CoT causality is to system-
atically generate alternate chains that omit or paraphrase individual reasoning steps that
appear critical to the final answer. By checking whether the model still reaches the same
answer, we can assess whether the omitted or altered steps genuinely influenced the outcome.
Discrepancies in the resulting behaviour—measured by answer consistency rates across
counterfactuals—can expose unfaithful reasoning [75, 47, 6, 68, 4]. However, one risk of
this approach is that paraphrasing reasoning steps may generate out-of-distribution traces
[61]. In such cases, the model’s behaviour may become unreliable—not because the step was
irrelevant, but because the paraphrased input falls outside the model’s training distribution,
introducing confounds into the causal test.

2. Grey-box approach: A step up in complexity involves training a verifier model V to distin-
guish between causal and non-causal chains-of-thought (CoTs). To generate supervision
data, we construct pairs of CoTs for the same prompt: one that the model actually used
to produce its answer, and an adversarial CoT that appears plausible but is not causally
responsible for the model’s decision. These adversarial CoTs can be created by deleting or
altering critical reasoning steps in the original CoT, or by generating plausible distractor
explanations that would not independently lead to the same answer—drawing on previous
methods [47]. While this does not require full mechanistic intervention, we assume that
such perturbations can reduce or eliminate causal influence. The verifier is then trained to
predict whether a CoT reflects the underlying causal computation. This setup can be viewed
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as a prover–verifier framework, where the model acts as a prover producing rationales, and
the verifier judges their faithfulness. Success is measured by generalization to held-out
prompts, correctly identifying faithful vs. spurious CoTs [21].

3. White-box approach: By extending causal tracing techniques such as the ones proposed
by Meng et al. [55] to multi-step reasoning, we could identify hidden activations tied to
each CoT step and swap or ablate them to measure their impact on the final answers. A
causal CoT is then one that yields significant changes when key activations are patched [4].
This is related to ELK [18], which aims to report on hidden information within models [53].
However, interventions may cause unintended semantic shifts due to causal sensitivity [66].

Cognitive Science-Inspired Approaches. The parallels between human cognition and LLM rea-
soning suggest potential improvements to CoT faithfulness. Human metacognition, error detection,
and dual-process reasoning offer valuable design patterns for more transparent AI explanations.
Below, we outline three approaches inspired by cognitive science that could help bridge the gap
between model computation and verbalised reasoning:

1. Error Monitoring through Metacognition. A model could be trained to assign a confidence
score or consistency check to each step, essentially asking itself “Does this follow logically
from prior steps?” If a step registers as low-confidence or inconsistent, the model could halt
or revise that part of the CoT. Such an internal sentinel, inspired by human error-monitoring,
might catch confabulations in situ. Yet a step-level consistency check alone will not address
the common “answer-first” (order-flip) failure mode, in which the model covertly decides
on the answer early and then retrofits its reasoning. Detecting or preventing that flip likely
requires complementary causal tests (e.g., verifying that perturbing the CoT alters the
answer) or mechanisms that force the model to commit to its reasoning before generating the
final answer. However, implementing reliable self-monitoring is non-trivial—there is a risk
the model’s “internal critic” may be as fallible as the model itself, or overly conservative,
flagging valid creative leaps as errors.

2. Self-Correcting Narratives. If there is a significant mismatch between the predicted
outcome of the verbalised reasoning so far and the internal computation that the CoT
is taking, the model would recognize a potential narrative drift. It could then loop back,
revising or re-generating steps to better align with an internally consistent plan. This iterative
refinement might reduce instances of the model “talking itself into” a wrong answer with
an unfaithful rationale. One option is to detect and fix incorrect assertions in the CoT [43].
Another is to have a model simulate a high-level plan, and then generate a chain-of-thought
that supports that plan in order to increase coherence. One risk is that a model might learn to
game this system, adjusting its reasoning only to fulfill the prediction rather than to uncover
truth, potentially reinforcing biases. Implementing a feedback loop can also slow down
inference and complicate training, like how human iterative thought requires more cognitive
resources than intuitive leaps.

3. Dual-Process Reasoning. In practical terms, one might have an LLM generate a draft
answer intuitively, then invoke a secondary process (another model or a self-reflection
step) to critically assess the draft, step-by-step, before finalising it. Such a metareasoning
module could verify each step of the primary CoT against facts and logical rules, like a
mathematician checking each line of a proof, or through estimated conditional probabilities
of assertions being true given previous assertions [43], which makes it possible to verify
if the laws of probabilities are consistently applied. This two-stage approach could make
CoT more trustworthy by ensuring that the final explanation passed an internal consistency
audit. The drawback may be the added complexity: the “critic” module needs to be as
knowledgeable as the “proposer,” and if they disagree or the secondary process has blind
spots, the system could stall or even produce inconsistent results. There is also a risk of
false security: a flawed CoT could potentially slip through a weak verifier, lulling us into
undue trust. Another issue is that some assertions in the CoT do not need to be true with
100% certainty to be useful in predicting answers, and it would be useful to use the calculus
of probability [43], which generalizes pure symbolic logic.

Enhancing Human Oversight of AI Reasoning. Beyond technical improvements to CoT itself,
we must develop better tools and frameworks to help humans effectively evaluate, interpret, and
oversee AI reasoning processes. Human oversight requires both faithful explanations and interfaces
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that support critical assessment of model outputs. The following approaches can help bridge the gap
between AI reasoning and human understanding:

1. Faithfulness metrics and evaluation. Standardise model evaluations with metrics like
perturbation impact (accuracy drop when CoT steps are removed) and hint–reveal rate
(frequency a model admits hidden prompt cues) [47, 4]. Benchmarks should include tasks
with candidate causal factors, assessing if these factors influence model reasoning.

2. Scaling laws for faithfulness. Chart how faithfulness metrics evolve with model size and
training regimen (base vs. CoT-fine-tuned vs. RLHF), quantifying trends in perturbation
impact and revealing rates. Initial evidence suggests mixed trends: larger models may
generate more faithful explanations in typical QA settings [69], but also hide biases more
adeptly [4].

3. Human-centred interfaces. Design interactive UIs that let users explore, verify, and
annotate CoT steps (e.g., click-to-expand justifications or step-level confidence indicators),
drawing on latent-knowledge extraction tools [15]. User studies should measure decision
accuracy, trust calibration, and improvements in error detection.

While the above research directions outline promising approaches, it is important to note that faithful
CoT remains an open challenge. Current work has primarily focused on detecting unfaithfulness (e.g.,
through perturbation studies and causal tracing) rather than solving it. The proposed solutions—causal
validation, cognitive-inspired architectures, or human oversight—have shown only partial success
in controlled settings. For instance, while verifier models can identify some non-causal CoTs, they
struggle with novel reasoning patterns and may themselves be unfaithful. Similarly, while activation
patching can reveal which steps influenced the final answer, it does not guarantee that the verbalised
reasoning matches the model’s internal computation. The fundamental challenge persists: transformer
architectures process information in distributed ways that resist sequential explanation, and current
methods have not yet bridged this architectural gap between computation and explanation.

7 How Should We Balance Chain-of-Thought Usefulness and Limitations?

Current CoT techniques stand at an intersection of utility and misleading trustworthiness. On one
hand, CoT has undeniably boosted performance on many tasks by encouraging structured reasoning,
providing a human-readable window into the model’s process. On the other hand, as we argue, these
windows can be treacherous—the CoT often looks like a logical derivation, but may not correspond
to the model’s route to the answer. In this section, we discuss how we can preserve the usefulness of
CoT explanations while mitigating their unfaithfulness. We outline several promising (if speculative)
methods, and also consider alternative viewpoints about the necessity of such interventions.

Alternative Views. While our paper calls for substantial modifications to prompting, many
researchers may not view CoT unfaithfulness as pressing, instead tolerating its current limits or
assuming future model advances will fix them:

• CoT as useful proxy (faithfulness not necessary): Some researchers emphasise that,
despite fidelity issues, CoT still serves a practical purpose. A plausibly reasoned explanation
that leads to a correct answer can be valuable even if it’s not the exact route the model
took. For example, in medical diagnosis, a model might arrive at the correct diagnosis
simply through copying the answer from similar examples seen during training, but explain
its reasoning using textbook medical knowledge. While not faithful to internal processes,
this explanation helps doctors understand and verify the diagnosis. Similarly, in legal
document analysis, a model might use shortcuts to identify relevant precedents, but explain
its reasoning through standard legal principles, making the output more actionable for
lawyers. This perspective prioritises the usefulness of explanations in human-AI interactions
over their accuracy as representations of model computation. However, this approach has
limitations: it may lead to over-trust in high-stakes scenarios where understanding the true
reasoning process is crucial, and it could mask systematic biases or errors that only become
apparent when examining the actual computation path.

• Will scaling and better training bridge the gap? Some believe that CoT unfaithfulness
will naturally diminish as models become more powerful and are trained on better data.
According to this view, as models improve in overall reasoning capabilities, the gap between
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their internal computation and verbalised explanations should narrow. For instance, larger
models have shown improved performance on complex reasoning tasks [14], and specialised
training techniques like reinforcement learning from human feedback (RLHF) have demon-
strated some success in making models more honest about their reasoning [44]. However,
this view faces several challenges: (1) we lack clear evidence that larger models produce
more faithful explanations rather than just more plausible ones, and on the contrary, there is
evidence that models produce less faithful explanations as they get larger [47], (2) there is
no evidence that training methods which enhance task performance also incentivize models
to produce more faithful explanations, and (3) the architectural constraints of transformers
(distributed processing) may fundamentally limit how well they can verbalise their internal
computations [76]. Recent work suggests that more advanced models may simply become
better at hiding their unfaithfulness, making it harder to detect when explanations diverge
from actual computation [8].

• Assisting CoT with future interpretability tools: Proponents argue that improvements
to interpretability techniques, such as activation patching, causal tracing, and attention
visualisation, could provide complementary insights into model computation [15]. For
example, while a model’s CoT might not fully capture its reasoning process, these tools
could help identify which parts of the input influenced the output and how different model
components contributed to the final decision. This approach has the advantage of working
with existing models and could provide more detailed insights than CoT alone. However,
current interpretability tools face significant limitations: they often require extensive compu-
tational resources, may not scale well to larger models, and can be difficult to interpret even
for experts [11, 46]. Moreover, these tools typically provide post-hoc analysis rather than
real-time explanation, making them less practical for many deployment scenarios.

• CoT as performing computation in complex tasks: A more optimistic view is that chain-
of-thought is not merely a post-hoc rationalization or interpretability tool, but part of the
model’s actual computation on complex tasks. That is, in sufficiently difficult reasoning
settings—such as multi-hop question answering or mathematical proofs—models may rely
on generating intermediate steps to scaffold their thinking, in a way that might mirror human
reasoning processes. In such cases, the CoT may be causally upstream of the final answer,
making it a partially faithful reflection of the model’s forward pass. While direct empirical
evidence remains limited, early observations suggest that models often fail at complex
reasoning without CoT prompting, and that their intermediate steps tend to align with
correct high-level abstractions. For example, Baker et al. [8] showed that CoT reasoning can
reveal reward hacking behaviors in real-world reinforcement learning agents, suggesting
that in complex environments, CoT can truly reflect model cognition and support effective
monitoring. In this view, the usefulness of CoT stems not from its faithfulness to some
latent structure, uninterpretable forward pass, but from the fact that it is the forward pass:
a human-legible trace of model computation. Of course, this perspective still leaves room
for concern—models might alternate between using CoT for genuine reasoning versus
decoration depending on the prompt or context—but suggesting that CoT faithfulness should
be evaluated on a task-by-task basis, rather than assumed to be always absent.

Summary
While CoT may offer communicative clarity that could help humans follow a model’s reasoning
process, it still carries a potential for misdirection when the verbal chain diverges from the model’s
internal computations. In high-stakes scenarios, this divergence can translate into real harm if users
over-trust a fluent but unfaithful rationale. Our analysis and the research roadmap in Section 6—
targeting causal CoT validation, cognitive science-inspired architectures, and enhanced human
oversight tools—chart a path toward explanations that are both accessible and causally grounded.

8 Conclusion

Chain-of-thought prompting is widely viewed as a step toward interpretable language models. Yet
our analysis suggests that this promise is not yet fulfilled, and current CoT techniques are often
over-trusted. CoTs can appear coherent and convincing, while not faithfully reflecting the true
decision process of the model. This gap is not a rare anomaly—it is a systematic phenomenon,
shaped by prompt biases, latent shortcuts, architectural designs, and the inherent mismatch between
distributed computation and sequential verbalisation. Despite this, CoT is a useful mechanism for
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eliciting reasoning traces from black-box models. In complex tasks where it may scaffold the model’s
problem-solving, CoT’s communicative nature is valuable. But it should not be mistaken for ground
truth. Without causal grounding or validation, CoT explanations risk reinforcing the illusion of
transparency and explainability, undermining responsible deployment in high-stakes domains.

We have proposed a framework for evaluating CoT faithfulness—grounded in procedural soundness,
causal relevance, and completeness—and identified empirical and architectural drivers of unfaith-
fulness. We also present an automated audit pipeline to document interpretability claims in recent
CoT-centric literature. Going forward, we recommend that researchers and practitioners (1) avoid
treating CoT as sufficient evidence of interpretability, (2) adopt more rigorous causal evaluation
methods, and (3) develop hybrid techniques that preserve the accessibility of CoT while exposing its
true role in model computation.
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Appendix

A Does Chain-of-Thought Mirror Human Reasoning Patterns?

Interestingly, the disconnect between a verbalised explanation and the underlying computational
process is not unique to artificial networks. While we do not claim that LLMs think like humans,
cognitive psychology and neuroscience have documented similar phenomena in humans that offer
both cautionary analogies and potential inspirations for understanding and improving AI explanations:

Confabulation and Post-Hoc Rationalisation. Nisbett and Wilson [60] demonstrated that people
often provide plausible but inaccurate explanations for their decisions. In many cases, humans are
unaware of the true drivers of their behaviour and instead offer confabulated narratives. This suggests
that apparent step-by-step explanations (e.g., a person explaining their choice of a product by listing
logical factors, when in reality they were influenced by subtle environmental cues) can be mere
rationalisations, much like an LLM’s CoT may justify an answer without revealing its true genesis.

The Left-Brain Interpreter. Classic split-brain studies reveal that the brain’s language-dominant
hemisphere will generate explanations for actions initiated by the opposite hemisphere—even when
it lacks access to the true cause [30]. This “left-brain interpreter” continuously fabricates a coherent
story, masking the distributed and parallel nature of neural processing. While we acknowledge this is a
speculative analogy, recent work on distributed computation in transformers [26, 59, 65] suggests that
LLMs may similarly generate sequential narratives that mask their parallel computational processes.

Parallel Processing and Sequential Narratives in Humans and LLM. The human brain operates
via distributed, parallel processes yet yields a sequential subjective narrative of perception and rea-
soning (e.g., we experience a continuous stream of consciousness despite parallel neural processing).
Predictive processing theories posit that the brain constantly generates hypotheses about incoming
information and updates its internal model to minimise prediction errors [20]. The conscious narrative
we experience is a simplified summary of this complex process. While speculative, we note that
an LLM’s CoT could be viewed as one possible narrative path sampled from its latent distributed
computations. Notably, the brain’s narrative can be adaptive: if predictions strongly contradict reality,
error signals prompt a revised understanding. This hints that an LLM might benefit from a similar
mechanism to check and adjust its CoT when steps conflict with its latent knowledge, though as noted
in Section 5, models already exhibit some internal error correction.

Metacognition and Error Monitoring. Humans exhibit metacognition: the ability to reflect on
and evaluate their thoughts. The brain even has dedicated circuitry for error monitoring: for example,
the anterior cingulate cortex emits error-related signals when a mistake or conflict in reasoning is
detected [13, 83]. These signals can trigger heightened attention or strategy adjustment, preventing
us from confidently persisting in a flawed line of thought. While models already show some internal
error correction (as discussed in Section 5), explicit metacognitive mechanisms might help improve
the faithfulness of their verbalised reasoning by making the correction process more transparent.

Toward Self-Correcting Narratives (Predictive Coding in AI). In neuroscience, predictive coding
provides a powerful model of how brains correct their narratives by minimising surprise. While
models already show some ability to plan and correct errors internally, we could potentially enhance
this by designing an LLM reasoning process that explicitly forecasts the likely outcome of its current
chain-of-thought and compares it to the model’s actual next decisions or the final answer.

Dual-Process Reasoning and System-2 Analogues. Cognitive science often distinguishes between
fast, intuitive thinking (System 1) and slow, deliberative reasoning (System 2) [40]. Humans can
sometimes engage the latter to double-check or override the impulses of the former. While today’s
LLMs may not have a clear architectural separation between intuitive and logical processing, they
do show different behaviours in different contexts, sometimes answering directly (analogous to
System 1) and sometimes engaging in step-by-step reasoning (analogous to System 2). This has
led some researchers to speculate about architectures that explicitly incorporate a System-2 module
for reasoning. For example, Bengio [10] proposed a “consciousness prior” for neural networks,
encouraging a sparse, sequential activation of neurons corresponding to something like conscious
thought.
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Figure 2: The overview of our CoT interpretability claim detection pipeline, which classifies papers
into class 1, class 2, and neither. For each paper, we first divide the body text into chunks and embed
them into vector representations. We then retrieve the top-k chunks most relevant to a predefined
query and concatenate them with the query to form an input prompt. This prompt is passed to GPT-4o
to determine the class.

These cognitive parallels suggest potential directions for improving CoT faithfulness. Just as humans
benefit from metacognitive awareness and error monitoring, future LLMs might incorporate more
explicit self-checking mechanisms. However, implementing such systems faces similar challenges
to human cognition: the monitoring system could be as fallible as the process it monitors. The key
insight from cognitive science is that narrative construction—whether human or artificial—inherently
simplifies complex parallel processes into sequential stories.

B Detecting CoT Interpretability Claim in Recent AI Community

In Section 3, we discuss how prior studies have identified CoT as an interpretable technique in model
design. In this section, we introduce our automated pipeline developed to identify such claim at scale.

B.1 CoT Interpretability Claim Detection Pipeline

B.1.1 Pipeline Overview

Given a CoT-centric paper, our pipeline, illustrated in Figure 2, classifies it into one of the three
classes: class 1 - papers that regard CoT as an interpretable or transparent technique; class 2 - papers
that make the class 1 statement and additionally incorporate CoT as the main feature of their proposed
models/datasets; neither - papers that do not attribute interpretability to CoT. We collect 1000 most
recent arXiv papers (from 2024-04-30 to 2025-06-05) with the main topic being CoT and build our
analysis on them.

Our pipeline adopts retrieval-augmented generation (RAG) to implement categorization. The input
paper is segmented into text chunks, which are embedded into a vector space to form the vector
database. We then retrieve the top-k most relevant chunks based on semantic similarity to a predefined
query. The selected chunks, along with the query, form the final prompt to GPT-4o to determine the
class. Our implementation builds on LangChain and Faiss [25] libraries. k = 4 by their default.

B.1.2 arXiv Crawling Rules and Pipeline Query

We outline our paper collection criteria and the query used for retrieving text chunks and constructing
the final prompt. Specifically, we include an arXiv paper if:

1. Its abstract contains any of the following strings: "chain-based reasoning," "CoT," or "chain-
of-thought."

2. It has a minimum length of 8 pages.

From the pool of papers meeting these criteria, we collect the 1,000 most recent papers.
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Notably, the portion of CoT interpretability claim does not show a declining trend over time.

Figure 3: The statistics of the 1000 most recent CoT-centric papers collected from arXiv.

The input query is as follows:

Chain-of-thought is not interpretable/explainable/transparent because it may not reflect an LLM’s
internal computations. However, some papers still (1) mention chain-of-thought (or chain-based
reasoning) as an interpretable/explainable/transparent technique; or even claim (2) they adopt
chain-of-thought to establish an interpretable model/framework/pipeline/agent/dataset.

Does this paper claim (1)? Or even (2)? Or none of them (N)? Give me the answer with reasons
following the template “answer: X reasons: ”, where X is 1, 2, or N.

B.2 Results

Figure 3a presents the distribution of the three classes among the 1000 CoT-centric papers. We
find that 24.4%—a non-negligible percentage—of the papers, when introducing their CoT-based
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frameworks, regard CoT as a technique that has made their models interpretable in addition to
performance gain. Only 3.4% of the papers do not link their core methods to interpretable CoT and
only admit CoT as an interpretability technique. To explore temporal trends, we group papers by final
update month and plot the combined portion of class 1 and class 2 papers, as shown in Figure 3b
(2024-04 and 2025-06 are excluded due to incomplete data coverage). We observe no clear decline in
interpretability claim, highlighting the motivation behind our work.

To assess the reliability of our automated pipeline, we manually classify the most recent 100 CoT-
centric papers (from 2025-05-25 to 2025-06-05). The resulting agreement rate is 83%, with a false
positive rate—cases where we label a paper as “neither” but GPT-4o labels it as “class 1” or “class
2”—of only 5%.

Finally, we adopt another simple GPT-4o-based classification pipeline to categorize each of the
1000 papers into one of the four domain classes—medical AI, AI for law, autonomous vehicles,
and none-of-the-above—based on paper title and abstract. This automated classification is followed
by manual verification to ensure 100% precision. Our analysis reveals that papers in high-stakes
domains are more likely to frame CoT as an interpretability tool compared to the overall average
(25%). Specifically, 16 of 42 (38%) medical AI papers, 17 of 27 (63%) autonomous vehicle papers,
and 1 of 4 (25%) AI-for-law papers adopt this interpretability framing.
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